Polynomes

I) Définitions
Définition telle qu’elle est donnée dans un sujet du concours général :

La fonction f'est une fonction polynomiale :
*si fest nulle
* ou s’il existe un entier n = 0 et des nombres réels aq , a4, ... , a, avec a,, # 0 tels que,

pour tout nombre réel x, f(x) = a,x™ + a,_x* 1+ -+ a;x+ag = ZZ:O akxk

Les nombres ag , a4, ... , a, sont alors appelés coefficients de la fonction polynémiale f.

L’entier n est appelé le degré du polyndme et le coefficient a,, est appelé le coefficient dominant.

Le degré d’un polyndme constant non nul est donc égal a 0 et, par convention, le degré du polynome nul est égal a —co

Remarque importante : L’écriture d’une fonction polynomiale étant unique, on procédera a des identifications :

Proposition 1 : Une fonction polynomiale est nulle si et seulement si tous ses coefficients sont nuls.

Conséquence : ) —o apx’® = Dk=o bix® & sp_o(a—boxk =0 Vk e [0;n] : a, = by

Conséquence : Si deux polynomes sont égaux, alors ils ont le méme degreé.

Exercice 1 : Pourtoutréel x,ona: ax?+ (b —2a)x —c = 3x?—5x + 7 Déterminer la valeur des réels a, b et c.

a=3 a=3
Correction: {b—2a=-5 & b=1
—c=7 c=-7

Remarques : Dans la suite de ce chapitre, on confondra un polynéme P ( que I’on notera P(X) = Z}g:O apX k )
et sa fonction polynomiale f associée (notée : f(x) = ZZ:O akxk )

On identifiera également le polyndme dérivé P’ a la fonction dérivée associée f'

Tout cela est possible car les coefficients seront des réels dans tout ce chapitre

II)  Dérivation

Soit f la fonction définie pour tout réel x par f) =apx™ + ap_1 x4+ ayx + ag =Z£=O apx k
On suppose que deg(f) = 1.

Alors: f'(x)=na,x" '+ (n—Dap_x" 2+ +a;, = Z’,;l:l kakxk‘l

deg (f’) = deg(f) -1

Définition : On définit les dérivées successives de f en posant f(O = £, f) = f7 @) = g7

et pour tout entier m, fM*D = (f (m)), On dit que f ™ est la dérivée m-iéme de f




Exercice 2: 1) Pour tout réel x, f(x) = azx® + ax? + a;x + a, Exprimer. f® (x)
f'(x) = 3azx? + 2a,x* + a4
fl'(x)=2x3xazx+1x%2x*a,
f®x)=2%3%a, rappel : n ! =1%2*3_ *n

2) Pour tout réel x, g(x) = XF_oaix* avec a, # 0, Exprimer g™ (x).

g™ (x)=n'a, (fonction constante) et g™*V(x)= 0

1)  Degré
Soient P et Q deux polynomes de degrés respectifs n et m.
P=a,X"+a, X" 1+ +a;X+a, Q=b, X"+ by X" 1+ -+ b X+b,

Quel est le degré de P+ Q0 ? Conjecture : P=3x3 —x>+1 Q=5x*—x doncdeg(P+Q)= 3

Q=-3x3+x*+3x—-1 deg(P+Q,) =1

Proposition 2 : deg(P + Q) < max (deg(P); deg(Q))

De plus, si les deux polynomes sont de degrés distincts, il y a égalité.

Démonstration :

SiP=Q=0 (donc deg(P) = deg(Q) =—C) alorsP+Q=0etdeg(P+ Q) =—o0

Sinon, on pose N = Max(deg(P),deg(Q))
Quitte a ajouter des coefficients nuls a P ou a Q, on peut écrire P(X) = ZI,‘Y:O apX k et QX) = Zg:o b X k

Onaalors: (P + Q)(X) =X¥_o(ax + bp)X* doncdeg(P+Q) <N

Si deg(P) # deg(Q) alors ay ou by estnon nul et ay + by # 0. Donc : deg(P + Q) = Max(deg(P),deg(Q))

Proposition 3 : deg(PQ) = deg(P) + deg(Q)

(en effet , le terme dominant de PQ est a, b, X"™*™ car a,b,, # 0)
n¥m n¥m

Exercice 3: Déterminer tous les polyndmes P tels que : P'(X) + X P(X) = X2 + 1 (%)

(indice : Montrer d’abord que si P vérifie la relation, alors deg( P) = 1)

Correction :

P ne peut clairement pas étre le polynéme nul car X* + 1 n'est pas le polyndéme nul.

Sideg(P) =2 alors deg(P' + XP) = deg(XP) = 3. Ce qui est impossible car deg(X? + 1) = 2.

Si deg(P)=0 alors deg(P' + XP) = 1 Ce qui est impossible car deg(X? + 1) = 2.

Donc deg(P) = 1 et il existe (a;b) € R*rel que P = aX + b
PP+XP=X?+1®a+@X?+bX)=X?>+1&aX?+bX+a=X*+1®a=1etb=0DoncP =X

Donc si P veérifie la relation (*) alors P =X (en fait c’est le seul polynome qui peut-étre solution mais il faut encore
verifier qu’il est effectivement solution ) (c’est le seul candidat possible... )

Réciproquement, il est clair que P = X verifie la relation (*) Conclusion S = {X}




IV) Division euclidienne
1) Définitions et propositions

Définition : On dit qu’un polynome B divise un polyndéme A s’il existe un polynéme Q tel que A =BQ
(on dit aussi que A est divisible par B ou que ¢ est un multiple de B )

Exemple: X? — X —2=(X+1)(X—2) doncX + 1etX — 2 divisent X2 —X —2

Théoreme : Si A et B sont deux polynémes ( B non nul ) alors il existe un unique couple de polynome (Q,R) tel que :
A = BQ + Rectdeg(R) < deg(B)

Q et R sont respectivement appelés quotient et reste de la division euclidienne de A par Q.

démonstration:

1) Existence
P 3
Notons p = deg(B) 20, B = Z b; X’ (donc by # 0). Nous allons procéder a une récurrence Sur
j=0
le degré de A. Considérons la propriété Py, suivante :

Pour tout A de K[X] tel que deg(A) < n, il existe (Q.R) € (K[X))? tel que:
A=BQ+ R et deg(R) < deg(B).

* Py est vraie. En effet, si A est une constante, il suffit de prendre :
0=0¢et R=A, si deg(B) =1
Q=Ab,' et R=0, si deg(B)= 0.

+ Supposons P, vraie pour un n de N, et soit A € K[X] tel que deg(A) =n + 1. Notons
n+l
A= Za;X'. et considérons :
=0 e
Ont1 =8ni1by X"77F et Ry =A—BQ,y.

Par le choix de Q,,1, les termes de degré n+1 de A et de BQ,.1 sont les mémes, dor

D'apres Py, il existe (Qp, Ry) € (K[X])? tel que :

Rns1 =BQn+ Ry et deg(R,) < deg(B).

Ennoant Q = Q, .1 + Q, et R = R,,ona:

A=R
Cnt1+(BOn+ Ry) = BO + R et deg(R) < dea(B).

2) Unicité : On suppose qu’il existe deux couples de polyndmes (Q; , R,) et (Q,, R,) tels que :
A = BQq + R, avec deg(R;) < deg(B)
et A = BQ, + R, avec deg(R,) < deg(B)

On a donc I’égalité : BQ, + Ri=BQ, + R, & B(Q1 — Q) =R, — Ry (%)

SiQq # QalorsQ; —Q; #0et deg(B(Ql - Qz)) = deg(B) + deg(Q; — Q2) = deg(B)
or deg(R, — R;) < Max(deg(R,),deg(R,)) < deg(B) Contradiction. Donc Q1 = Q»

Donc, d’aprés (*), Ry = R,  L’unicité du couple (Q , R) est ainsi prouvée.



Définition : On dit que le nombre a est une racine d’un polynéme P lorsque P(a) = 0

Proposition 4 : soit P un polyndéme. a estune racine de P <& ( X —a ) divise P

Démonstration :

<=Si (X — a) divise P, alors il existe un polynome Q tel que P = (X —a)Q etonadonc P(a) = (a —a)Q(a) = 0.
= Supposons que a soit une racine de P. effectuons la division euclidienne de P par (X — a)

Il existe un unique couple de polyndmes (Q, R)tel que : P= (X —a)Q + R etdeg(R) < deg(X —a) =1

Donc le polynome R est un polynome constant .

Or 0=P(a) =(a—a)Q(a) + R(a) donc R(a) = 0 etR étant constant, onaR =0et P = (X —a)Q

Proposition 5: Soitn € N* et a;,a,, ...,a, nracines distinctes d’un polynéme A alors [[}_,(X — a;) divise A.

Démonstration : Récurrence sur n.

On note : P(n) la propriété ci-dessus.

* P(1) est vraie d’aprés la propriété précédente.

*On suppose P(1) vraie pour un certainn € N* et on considére ay, ay, ..., Ay, Qy4q racines distinctes de A.
D’apres P(n) , A se factorise déja sous la forme 4 = [[r_;(X — a;) Q ou Q est un polynome.

Aany1) = [Ti=1(@n1 — @) Q(@ns1) =0 (an4q est une racine)

Or, les racines étant distinctes :[[jr=1(@ns1 — ax) # 0 donc Q(apyq) =0 et Q s’écrit donc sous la forme
Q=(X- ap41)Q; donc A=TI'E1(X —a,)Q; et P(n+1) est donc vraie

* P(n) étant vraie au rang 1 et héréditaire, on conclut qu’elle est vraie pour toutn € N*.

2) Exemples de divisions euclidiennes
fx) =x3+6x%2—x—30
On peut vérifier rapidement que -5 est une racine. f(x) est donc factorisable par (x + 5)
Voici 2 méthodes permettant d’effectuer la factorisation :

*identification des coefficients (voir proposition 1 et exemple 1)

Déterminer les réels a, b et ¢ tels que x3 + 6x2 —x — 30 = (x + 5)(ax? + bx + ¢)
x3+6x2—x—30=(x+5)(ax?+bx+c) ® x3+6x?>—x—30=ax3+bx?+cx + 5ax? + 5bx + 5¢

& x3+6x2—x—30=ax3+(b+5a)x?+ (c +5b)x + 5¢

b-:l521—6 a=1
=% v elp=1 conclusion : x3 + 6x%2 —x —30 = (x + 5)(x2 + x — 6)
c+5bh=-1 c=—6

5¢=-30



*QOn peut poser une division en suivant le méme genre de protocole que dans les divisons enseignées en primaire.

. . - .5
-Par quoi faut-il multiplier le x de x + 5 pour obtenir x° ? par x> W+ 6x*-x-30lx+5

Puis on multiplie x + 5 par x* et on soustrait le résultat a x> +6x> -x -30 x*

On obtient x? N 2
XK HBRT-x-30{x+5

On abaisse ensuite le -x el S 'S

-Par combien faut-il multiplier le x de x+5 pour obtenir le x* bleu ? par x xR +6x2-x-30|x+5

Puis on multiplie x + 5 par x et on soustrait le résultat a x>-x X3 - X X+ %
Bx - 30

On obtient -6x et on abaisse -30.
X+ -%x-30|x+5

- Par combien faut-il multiplier le x de x+5 pour obtenir le -6x bleu ? par -6. _ -
K- x4+ x%x-6

Aprés soustraction, on obtient un reste nul et on en conclut que

'S 20
-I-'v\ = A

x34+6x2—x—-30=(x+5)(x*>+x—6)
Le trindme x? + x - 6 peut ensuite se factoriser facilement en déterminant ses racines.
On obtient : x3 + 6x%2 —x —30 = (x + 5)(x — 2)(x + 3)

Attention : Le reste d’une division n’est pas toujours nul.

Exercice 4 : Effectuer la division euclidienne de x* + 3x3 — 2x? + 7x — 12 parx?—1

La division s’arrét lorsque le degré du reste est strictement X430 - 2%+ Tx - 12 %31
3 2 2
inférieur a celui du diviseur. Jx-x X H3x-1
-x* + 10x
On obtient ainsi : x* + 3x3 — 2x% + 7x — 12 =(x®*-1)(x* +3x—1) + 10x- 13 10x - 13

Exercice 5 : Effectuer la division euclidienne de 6x* — 2x3 + 9x% — 2x — 2 par x%+ 2

6 —2% 4922 —2¢ =2 22+ 2
—64 —122° 62° — 2z — 3
—29° — 3z —2r =2
2 +4a
-3z 42z -2
3x® +6
21 +4




3) Application : Lever une forme indéterminée dans le calcul d’une limite

. . . . xX34+x-10
Exercice 6 : Déterminer lim ————
— x—2 2X2—x—6

C’est un cas sournois d’indétermination de type 0/0.
L’idée est de factoriser par (x — 2) le numérateur (par exemple en le divisant par (x — 2)) et le dénominateur.
On peut ensuite procéder a une simplification et le tour est joué !

. X+x-10 (x-2)x*+2x+5) x*+2x+5 13
e 2T —x—6  asr (x—2)2x+3)  xe2 2x+3 7

. . T . . s 3 .. .
Attention , graphiquement, on visualise bien le fait que la fonction n’est pas définie en — 5 mais il faut garder en téte

qu’elle n’est pas non plus définie en 2.

1y a en fait un « trou » (invisible) dans le tracé de la courbe : elle est discontinue en 2.
. 13 . .
Par contre , si on pose : f(2) = —~ alors elle devient continue en 2.

On dit que ’on a effectué un prolongement par continuité en 2.

Proposition 6 : Soitn € N et A un polynome de degré au plus n.

A est le polyndme nul <> A admet au moins n + 1 racines distinctes

Conséquence : Un polynéome non nul de degré n > 1 admet maximum n racines
Démonstration :
= Evident
<= Si A admet au moins n + 1 racines distinctes, alors d’apres la proposition précédente :
A=[[*1(X — a,)Q; ou Qg estun polyndme.
Si Q; # 0, on aurait deg(4) = deg([TH1(X — a;)Q1) = n + 1, ce qui est impossible car deg(4) < n.
Il y a une contradiction donc on en déduit que notre hypothese est fausse

Donc Q4 = 0 et par conséquent, A = 0.



APPLICATION : Les polyndmes de LAGRANGE

Soit f : [a, b] = R une fonction pour laquelle on connait les images de n + 1 nombres distincts xg, X1, ..., X, de
I’intervalle [a ; b]

Le but est de construire une fonction polynomiale P de degré inférieur ou égal a n

dont la courbe représentative passe par les points Ao(xo f (xo)) R Al(xl f (xl)) An(xn f (xn))
Cest-a-direque: Vj € [0,n] P(x;) = f(x;)
A A,

\‘0\“&‘9‘\

A 4
Y
\

polynome de deg 1 polynome de deg 2 polynome de deg 3

| Théoreme : Si une telle fonction P existe, alors elle est unique.

Démonstration : Soit Q un autre polynéme solution de notre probléme.

AlorsVj € [0,n] Q(x]-) - P(xj) = f(xj) _f(xj) =0 etdonc(Q - P)(xj) =0

Donc le polynome Q-P a n+1 racines or deg (Q-P) < n donc d’aprés la proposition précédente, Q-P est le polyndme
nul. Donc Q=P .

Théoreme : Il existe un polyndme solution de ce probléme (et il est donc unique d’apreés le théoréme précédent)

Ce polynome s’écrit :

Po(x) = Bio fO)Li(x) o Li(x) =TI g ((;_—J;’;))

Le polyndme P, est appelé polynome d’interpolation de Lagrange de la fonction f aux points xg, X1, ..., Xn,

Les polynomes L;(x) sont applelés polynomes de base de Lagrange associés a ces points.

Démonstration :

*Existence - 11 suffit de vérifier que le polynéme proposé est bien solution du probléme.
Remarquons d’abord que
n ( o ) n n P .
vieon o LGy =] [y = e 2o Je-nn =e={o5i 2]
k+i k#i k#i
En effet :
Sii # j: k prend toutes les valeurs autres que i , donc il prendra la valeur j a un moment donné et le numérateur sera nul.
Sii =j: Le numérateur est égal au dénominateur....
Le polyndme B, (x) = X1t f (x;)L;(x) convient car :
vj € [0,n]: Py(x;) = Bito f(x)Li(x;) = £(x7) * Lj(x)= £ (x;)

En effet,comme indiqué ci-dessus, pour toutes les valeurs de i différentes de j , Li(xj) =0.



Exercice 7 : Le but est de construire une fonction polynomiale P de degré inférieur ou égalan = 2
dont la courbe représentative passe par les 3 points Ag(—1;6) A;(1;0)....4,(”;3)
Pu(x) =30 f(x)Li(x) = f(xo)Lo(x) + fc)Ly(x) + f()Lp(x)

Exrpimons d’abords les polynémes de base L et L,

X=X
Il est inutile de s’intéresser a L, car f(x;) = f(1) = 0 d’aprés I’énoncé. L;(x) = 71:—0 i ((x xk))
= i—Xk
X —X X —Xx x — x—1 x—2 1
Lo(x) = G _ = = * =— (x2—-3x+2)
L 2 (X0 —xx)  Xp—2x1 Xog— -2 -3 6

: (x —x) XxX—x9 x—x x+1 x-1
L(x):l_[ = * = * =
k=0 _xk) —XO —x1 3 1

P(2) = f(—DLo () + f ()L (x)=6 % = (x? — 3x +2) + 3« =2x2 —3x +1

On vérifie bien siir que les 3 images sont correctes...

Pour s’entralner sur un autre exemple, il suffit d’écrire une fonction polynomiale de degré n , de déterminer I’image de
n + 1 nombres et de « s’amuser » a retrouver la fonction grace aux polynomes de Lagrange.

ATTENTION : il y a une autre méthode pour déterminer un tel polyndme : P(x) = ax? + bx + ¢

a—b+c=6
a) Onsaitque P(—1) =6,P(1) = 0et P(2) = 3 et on obtient donc le systéme suivant : { a+b+c=0
4a+2b+c=3

1 -1 1 a 6
qui s’écrit sous la forme AX = BavecA=1 1 1 , X= <b> etB=(0
4 2 1 c 3

2
on résout 1’équation : A"'AX = A71B onadonc X =A"1B et X = (—3)
1

Proposition 7 : Relations coefficients/racines : polynome de degré 2

Soient S, P, x4, x, quatre nombres réels.

{x1+x2=5

& x4 et x, sont les racines du polynomes X? - SX + P
X1 Xy = P

Preuve :
2 X2-SX+P = X>(x1 +x,)X +x1 x;=(X-x1)(X —x5) donc x; et x, sont bien les racines du polynome

S+VS2-4P S—VS§2-4p

<= X1 = > etxZZT Onabien x1+x2=S et x1x2=P

Exercice 8 :
1) On remarque que 2 est solution de I’équation x2 — 5x + 6 = 0. Quelle est l'autre solution ?

2) Un rectangle peut-il avoir un périmetre de 16m et une aire de 8 m? ? Si oui, donner sa longueur et sa largeur.



Correction :
1) le produit des racines est égal a 6. Donc la deuxiéme racine est 3.
On aurait pu dire aussi : la somme des racines vaut -(-5) soit 5, et on retrouve 3 comme deuxiéme racine réelle.

2/ soit x; la longueur et x; la largeur du rectangle
Périmétre = 16 & 2x;+2x, =16 & 2(X1+X2) =16 = x+x,=8=S etaire=8 & x;x,=8=P

Donc x; et x, seraient les racines réelles de I'équation x* - 8x + 8 = 0 (*) d'aprés la proposition 6.

Le discriminant est positif, donc 1'équation (*) admet 2 racines réelles: x; = 4 + 2v2 etx; = 4 — 2+/2

V)  Multiplicité (ou ordre) d’une racine

a)TI‘H—l

Définition : a est une racine de multiplicité m > 1 si (X — a)™ divise A et que (X — ne divise pas A.

Sim=1, on parle de racine simple. Si m=2, on parle de racine double. Si m=3, on parle de racine triple.

Proposition 8 : soit P un polyndme.

a est une racine d’ordrem > 1de P © P(a)=..=P™ V(a) = 0et P™(a) # 0

Ilustration : P(X) = X2 —6X+9 A=0 doncuneracine double ou de multiplicité 2: x, = 3

Donc P(X) = (X — 3)? P'(X)=2X—-6  P’(X)=2 3 estbien racine de P et de P’ mais pas de P’

Exercice 9: multiplicité d’une racine

Soient a et b deux réels et P le polyndme tel que P(X) = X* + aX3 + bX? +aX + 1

1) Montrer que si le réel 1 est racine de P, son ordre de multiplicité est au moins 2.

2) Existe-t-il des réels a et b tels que le réel 1 soit racine de P d’ordre supérieur a 2 ?
Si oui, quel est alors son ordre de multiplicité ?

Correction :



1. P(X)=X*+aX®+bX*+aX+1, P'(X) =4X* + 3aX? + 2bX + a.
Supposons 1 racine de P alors P(1) = Odonc 1 +a+b+a+ 1 = Oc'est-a-dire 2a + b+ 2 = (.
Onendéduit P'(1) =4+3a+2b+a=4a+2b+4 =2(2a+b+2) =0.

Ainsi P(1) = 0 = P'(1) = 0.

Conclusion : Si 1 est racine de P c'est une racine au moins double.

2. P"(X) = 12X?% + 6aX + 2b.

"1 racine de P d'ordre au moins 3" équivauta ” P(1) = P'(1) = P"(1) =0 ".

2a+b = =2 {a.
=

Or d'aprés les calculs précédents P(1) = P'(1) = P"(1) = 0"« {
dJa+b = —6

Ainsi la réponse a la question est "oui".
Alors P(X) = X* —4X% +6X* —4X +1= (X — 1)~

Dans ce cas l'ordre de la racine 1 est 4.



Exercice 10 : multiplicité d’une racine

Soit P un polyndme.
On appelle Q le polynéme défini par Q(X) = (X — a)(P’(X) + P’(a)) — 2( P(X) — P(a))
Montrer que a est une racine d’ordre supérieur ou égal a 2.
Il faut montrer que a est racine de Q et de sa dérivée ( Q(a) = Q'(a) = 0)
Q(a) = (a- a)(P’(a) + P’(a)) — 2( P(a) — P(a))
Q@) =0x*(P'(a)+P'(a))—2%0=0
Attention : pour dériver Q , on pose U=X-a et V = P’(X)+P’(a) et on utilise la formule du produit.
De plus, attention, P’(a) et P(a) sont des constantes.
QX)) =(P'X)+P(a@)+X—a)P'(X)—2P'X)

Donc
Q'(a) = (P’(a) + P’(a)) +(a—a)P"(a)—2P'(a) =0

VI) Exercices

Exercice 11 : Les polynomes de Tchebychev
On définit une suite de polynomes (T},),en de la maniére suivante :
To(X) =1, T,(X) =X ,et YREN : Tyypy(X) = 2XTpp1(X) — T, (X)
1) CalculerT,,T; et T,

On trouve successivement :

To(X) = 2X T (X) — To(X) = 2X% — 1.

T4(X) = 2X To(X) — Th(X) = 2X(2X2 — 1) — X = 4X° — 3X.

Ty(X) = 2XT3(X) — To(X) = 2X(4X® — 3X) — (2X2 — 1) = 8X* —8X% + 1.

2) Prouver par récurrence que pour tout entier naturel n : deg( T,,) = n puis déterminer le coefficient dominant
de T,
Montrons par récurrence double sur n £ que degT =n.
Pour n=0¢et n=1:0k
Supposons 1a propriéte établie aux rangs n =0 et n+1. Aurang n+2 :
Onsait T ,=2XT T .
Par hypothése de récurrence degT =n et degl |, =n+1 d'ot degXT  =n+2.
Par somme de polyndmes de degré distincts - degT , =n+2.
Récurrence établie.
Les coefficients domunants de T, et T} valent 1.
Pour n =1, larelation T , =2XT —T . implique connaissant le degré de chaque polynime, que le
coefficient dominant de T, estle double de celuide T .

Par suite, pour » =1, le coefficient dominant de T, est 2° v



3) Etude de la parité
a) Conjecturer la parité de T,, en fonction de n
b) Prouver par récurrence que : Vn € N T,(—X) = (—1)"T,(X)

1l suffit de prouver, pour tout n de M, la propriété P(n) : T,,(—X) = (—1)"T,(X).

Elle est vraie si n = 0 (car Ty est pair) et si n = 1 (car T} est impair).

On se donne n = 0 et on suppose que P(n) et P(n + 1) sont vraies.

On en déduit :

Tos2(—X) = 2(-X)Tns1(-X) = To(=X) = 2(=X)(=1)""' T11(X) — (-1)"T0(X)

= (1) (2X T (X) = Tu(X)) = (1) T12(X)

Cela montre la propriété au rang n + 2 et achéve la récurrence.

Ainsi, pour tout n de M, le polynome T, a la parité de n.

4) Prouverque Vn €N ,T,(1) =1

La relation T,49(X) = 2XT,,11(X) — T(X) donne T, 42(1) = 2T,51(1) — To(1 ]
Or Ty(1) = T1(1) = 1. Une récurrence évidente donne alors : Vn e M, T,(1) =

5) Montrer que V (m,n) EN? , m<n = 2T, T = Tmin + Tnem

On note P(m) la propriété : “VneMN,. n>2m= 21,1, =T, .0m + T

On va montrer la propriété P(m) par récurrence sur m = 0.

La propriété P(0) est évidente (car Ty = 1), et la propriété P(1) n'est autre que la relation
connmue entre les polynémes T, ., T, et T, (car T} = X).

On se donne m = 0 et on suppose que P(m) et P(m + 1) sont vraies.

(Eg) : 2T, T, = Toyn + T

(E1) : 21Tt = Tonimat + Tnomt
On forme alors 2X(Ey) — (Ep) et on obtient :

212X T — 1) = (2X T 1 — Do) + (2X T,y — 1o )y Clest-a-dire

2T o =T+ Tn—{m-l—?}:a ce qui prouve P(m + 2) et achéve la récurrence.

On a done les égalités { valables pour n = m + 2.

6) Montrer que V (m,n) € N2 , Tp(T(X)) = Trpn(X)

On note P(m) la propriété : ¥n € N, T.,(TL(X)) = Thn(X).

On va montrer la propriété P(m) par récurrence sur m = 0.

Les propriétés P(0) et P(1) sont évidentes car Ty = 1 et T} = X.

On se donne m = 0 et on suppose que P(m) et P(m + 1) sont vraies.

On substitue T,,(X) & X dans Pégalité T,,.2(X) = 2X T, 11(X) — T (X).

On en déduit, pour tout n de M, et en utilisant P(m) et P(m + 1) :

Tni2(Ta(X)) = 2T(X) T4 (T0(X)) — Tn(To(X)) = 2T(X) T 1)a(X) — T (X)

Mais d’aprés (3) on a 2T, T y1yn = Timgam — Dnn-

On en déduit T,,,,o(7T,.(X)) = Tinr2)a(X). ce qui prouve P(m + 2) et achéve la récurrence.



Exercice 12 : On recherche les polynomes non nuls divisibles par leur propre dérivée

On procede en quatre étapes.

1ére etape . On montre que le probléme a un sens en exhibant des exemples de solutions.

2igéme étape : On suppose le probléme résolu pour un polyndme non nul et on en déduit la forme nécessaire d'un tel polynéme.
Jiéme étape : Réciproguement on vérifie que la forme particuliére trouvée est une solution.

dieme etape - On résout complétement le probléme.

1) Vérifier que les polyndmes P(X) = X; P(X) =X —1 et P(X) = (X + 1)? font partie des solutions
2) On suppose que le polynéme P, de degré n , de coefficient dominant a,,, est divisible par son polynome P’.
a) Démontrer quen > 1

Le polyndme P étant non nul, il posséde un degré ntelquen & N
Raisonnons par I'absurde, supposons 12 = (. alors P = 0 et P, non nul, ne peut pas &tre multiple de P’

Conclusion - n & N*.

b) Démontrer qu’il existe un réel « tel que P(X) = % (X—)P'(X)

=) Aide simple

Soit (} le polyndme tel que P = QP', utiliser les degrés de P et P’ puis les coefficients dominants pour trouver la forme de (2.

= Solution détaillée

Puisque P’ divise P, il existe un polyndme (@ tel que P = QP'(*).

Donc deg(P) = deg(Q) + deg(P') etdeg(Q) =n — (n—1) = 1.

Alors il existe deux réels a, btels que a £ 0, Q(X) = aX + b.

Les coefficients dominants des polynémes P, (), P' sont respectivement a,,, a, na,,.

L'égalité (*) implique a, = a * na,, dol a = % cara, #£ 0.

Onen déduit Q(X) = X + b= 1(X +nb) = - (X — «). si on désigne par « le réel —nb.

Conclusion : Il existe un réel  tel que P(X) = L (X — a)P'(X).

¢) Démontrer que si k est un entier 0 < k < n alors P®(X) = n—ik (X—o) P+ (X)



© Aide simple
| Raisonner par récurrence.

= Solution détaillée

Raisonnons par récurrence.

soit R(k) la relation P*) (X) = (X — a) PV (X).
R(0) est satisfaite d'aprés la question b.

Supposons 0 < k < n — 1 et R(k) satisfaite, donc

P[MUEX):( 1 {X—Q)Pfk'l}{X)]i:LPW'”(X)+ﬁ(X—Ct'}PLk'2](X)

n—k n—k

d'oll (l - ﬁ) P(klll(X) _ 1 (X—a)P”‘"z)(X)

n—k

puis PRI (X)) = - L I(X—a)P(R‘I?](X)_

Donc R(k + 1) est satisfaite.

Ceci termine le raisonnement par récurrence.
d)  Démontrer que le polyndme P vérifie I’égalité P(X) = a,(X—o)"
Solution détaillée

En appliguant le résultat précédent successivement aux entiers 0, 1, ..., n — 1, on démontre par récurrence

P(X) = 1(X - a)P'(X) P(X) = (X — a)’P"(X)

 nln—1)

LPX)=—1 (X —a)"P"(X)

nin—1)...1
or PU(X) = n(n—1)...1a, = nla,.

Dol P(X) = a, (X — a)™

3) SoitAX) =X —a)™ ou(n,6,a) E N*xR*xR*
Vérifier que le polynome A est une solution du probléme

A(X) = §(X —a)*. A'(X) = nd(X — a)" ! donc A(X) = (X — \apha)A'(X).

L)

Ainsi le polyndme A est divisible par son polyndme dérivé A"

4) Décrire I’ensemble des solutions du probléme.

Le polynéme nul est, de facon évidente, une solution.

D'aprés les questions 2. et 3., un polyndme non nul P de degré n est solution si et seulement sin #£ 0 et P est de 1a forme
A(X) =8(X —a)"ou (§,a) € R* x R

Donc § = {MX —a)": (n, A\, a) € N* x R*}.

Remargue - Quand le réel A est nul, on obtient le polynéme nul.



VII) EXTRAITS DU CONCOURS GENERAL
1) Exercice 1 du sujet 2019

La fonction f est une fonction polynomiale si [ est nulle ou s'il existe un entier d = 0 et des nombres réels
ag, @, ..., 04 avec dg # 0 tels que, pour tout nombre réel x =0,

fix)=agx®+ay; x4 @ x+a.

Les nombres réels ap, ay,..., d; sont alors appelés coefficients de la fonction polynomiale f.
51 .% est un ensemble de fonctions de 2, on définit les propriétés :

(P1) 5 contient u et 1.

(P2) 5 contient toutes les fonctions constantes positives.
(P3) Si f et g sont dans 5, alors f+ g est dans 5.

(P4) Sif et gsont dans 5, alors o g est dans 5.

(P5) Si f et gsont dans .5 avec f =g, alors f— g est dans 5.
(P6) Si f et g sont dans 5, alors [ = g est dans 5°.

1) Soit 5 un ensemble de fonctions de 2 qui vérifie les propriétés (P1), (P2), (P3), (P4), (P5) et (P6).
a) Soit £ la fonction définie, pour tout nombre réel x =0, par £(x) = x. Démonirer que la fonction
f estdans 5.
b) Déterminer toutes les fonctions affines qui sont dans 5.
¢) Soit p la fonction polynomiale définie, pour tout nombre réel x = 0, par p(x) = 2x° —3x+ 4.
Démontrer que la fonction p est dans 5.
d) Une fonction polynomiale de 2 est-elle toujours dans 5 ¢

2) Dans cette question, on suppose que % est un ensemble de fonctions de 2 qui vérifie les proprié-
tés (P1), (P2), (P3), (P4) et (P3), mais on ne suppose pas qu'il vérifie la propriété (P6). La réponse
donnée a la question d) est-elle encore valable ?

3) Dans cette question, on suppose que ¥ est un ensemble de fonctions de 2 qui vérifie les proprié-
tés (P1), (P2), (P4), (P5) et (PB), mais on ne suppose pas qu'il vérifie la propriété (P3).
a) Soit d un entier naturel non nul. On note )y la fonction définie, pour tout nombre réel x =0,
par

Qa(x)=(x+17-1

Montrer que Qg V.
b) Soit d un entier naturel non nul. Démontrer qu'il existe des nombres entiers ay,...,a; supé-
rieurs ou égaux a 1 tels que, pour tout nombre réel x =0,

-1

x+D¥=ax?+ay x4+ mx+ 1.

Etant donné un nombre IéE‘!_ x = 0, on introduira une variable aléatoire suivant une loi bino-
miale de parameétres d et m

c) Soit f une fonction polynomiale telle que f(0) = 0. Montrer qu'il existe un nombre réel c= 0 et
un entier naturel non nul d tels que la fonction qui, a tout nombre réel x =0, associe

c(x+x2 4+ x9— f(x)

est une fonction polynomiale dont tous les coefficients sont positifs ou nuls.
d) En déduire que, si [ est une fonction polynomiale de & telle que f(0) =0, alors [ est dans ¥.



CORRECTION

Dans ce probléme, il est guestion de déterminer quels sont les ensembles E de fonctions définies sur
0+ x[ et prenant leurs valeurs dans [Cl i+ x[ gui satisfont une liste de cing ou six propriétés.
*  Laproprieté (P3) est la stabilité pour Uaddition (la somme de deux fonctions de E appartient a E).
*  Lapropriété (P4) est la stabilité pour la composition (la composée de deux fonctions de E appartient
a E).
o La propriété (P6) est la stabilité pour la multiplication {le produit de dewx fonctions de E appartient
a E).
Les propriétés (P1) et (P2) introduisent gquelgues « brigues » élémentaires permettant de bitir I'édifice E en
guestion. Mais lequel 7 C'est ce que nous allons voir.

La. D’apres la propmété (P1), les fonctions w et v appartiennent a T. D'apres la proprieté (P4), leur
composée veu définie sur [0 : + [ par: vou (x)=tnlle* —1)+1)=tnle* )= x appartienta T.
La fonction identique id[p; +a notée [ dans ce probléme : x+s [ (x)= x appartient3 T.

1.h. La fonction identique appartient 3 T et, d’apres la propriete (P2), T contient les constantes positives.
D’apres la proprieté (P6), I'ensemble T contient le produit de 1a fonction { par toute constante positive :
Toutes les fonctions linéaires v+ a x 0l ¢ est un coefficient positf appartiennent a T.

D’aprés la proprété (P3), toute somme d'une fonetion linéaire de coefficient positif et d'une constante
positive appartient 4 T : toutes les fonctions affines x—=ax+ b oll @ et b sont des constantes positives

appartiennent 4 T.
Soit réciproquement x — f(x)=a x + b une fonction affine.

* 51 g<=0,l'image par f de I'intervalle

E, + x[ est incluse dans ]- oo D[.fn’est pas a valeurs dans

(¥}
[Ill + .r[ cette fonetion n'appartienf pas a T.

* 51 a=0 et b<0, 'image par fde |_||}: + ac|_ est un réel négatif, f n'est pas a valeurs dans l[], + xl,
cefte fonction n’appartent pas a T.



* S5ia=0et b<0,'image de I'intervalle [IIIL E[ est incluse dans |- <=, 0], fn’est pas a valeurs dans
a

[0, + =4[, cette fonction n’appartient pas a T.

Par conséquent, les fonctions affines x — ax+ 5 ol a et b sont des constantes positives appartiennent 4 T, et

ce sont les seules fonctions affines qui appartiennent & T. Notons qu'il s"agit 12 des fonctions polynomiales
du premier degré définies sur [0 ; + e<| et a valeurs dans [0 ; + =] .

l.c. En vertu de la propriété (P6), dés lors gue la fonction identique appartient & T, toutes les fonctions
puissances x+— x" appartiennent & T {elles sont produit n fois de la fonction identique) ainsi que toutes les

fonctions mondmes © x+—a, x" 0l a, est un coefficient positif.

En vertu de la propriété (P3), toute fonction polynomiale x+—a, x” +..+a, ol tous les a; sont des
coetficients positifs appartient & T (elles sont sommes de monbmes).

Il en est ainsi de la fonction polynomiale : x— 2x" +4.

Quant & la fonction x — 3x . en tant que fonction linéaire & coefficient positif, elle appartient a T.

» (37 .23 .
Pour tout x positif: plx)= (2 xt+ 4}— Jx= 2| x ~ I +EE[} : la différence entre la fonction
x—2x" +4 et la fonction x+~ 3x est une fonction positive sur [0, +==[. En vertu de la propriété (P5),

cette différence appartient 2 T. La fonction x— p(x)=2x% —3x+4 appartient a T.

1.d. Soit fune fonction polynomiale x — f(x)=a, x¥ +..+ a,avec a, = 0définie sur [0, + =[ et & valeurs
dans [0, + e=[. Avoir des valeurs dans [0, + ==[signifie admettre un minimum m positif sur [0, + ==

Dieux conditions au moins sont nécessaires pour cela
e a, >0 (si a;, <0, fadmet pour limite —=en + ==, elle n'est pas a valeurs dans [0, + ==[).
e a,20 (siay,<0, f(0)<0.fn’est pas non plus a valeurs dans [0, + ==[).

Soit [/ la partie de 1'ensemble des coefficients {a,....a,} contenant les coefficients positifs ou nuls. Cette
partie n'est pas vide, car elle contient au moins a; et a,. Soit V' la partie (éventuellement vide) de 1'ensemble
{a.,,..., an} contenant les coefficients strictement négatits.

Si Vst vide, fappartient 4 T comme on 1'a noté dans 1.c.

Sinon, posons : glx)= D a; x' et hlx)= D —a x' . Ces deux fonctions polynomiales sont 2 coefficients
ajel! aye

positifs, elles appartiennent toutes les deux 4 T.

Pour tout x de [0, +=o| : glx)—hlx)= flx)=m=0. la différence g—h est une fonction positive sur
[0, + =< . En vertu de (P5), cette différence appartient 2 T. Toute fonction polynomiale définie sur [0, + =< et
a valeurs dans [0, + ==| appartient 2 T.



Exercice 1 du sujet 2018 : Les polyndomes de Bernstein

Partie A : Les polyndmes de Bernstein

Pour tout entier naturel n et pour tout entier naturel { compris entre 0 et n, on note B, le polynéme
défini pour p variant dans l'intervalle [0; 1] par

Bpi(p)= [’;]pfu— p)"i

avec (T) le coefficient binomial, { parmi 7. Ainsi Bog(p)= 1; Brolpl=1—p et Brilp) =p.

Ces polynomes sont appelés polynémes de Bernstein.

1* (a) Donner I'expression de Bao(p), B21(p) et Baa(p).

(b) Déterminer I'expression des polyndmes de Bernstein pour n= 3, a savoir Bap(p), Bi1(p), Baa(p)
et Baa(p).
2*  (a) Quelle est 'expression de B, o(p) et de B, ,(p)?

(b) Démontrer que pour tout n= 1 et pour tout i compris entre 1 et n—1,
Bu,i(p)=(1-p)Bn-1i(p) + pBn-1,i-1(p).

3 (a) En quelle(s) valeur(s) pe [0;1] s'annule un polynéme de Bernstein ?
On raisonnera en distinguant les cas selon les valeurs de n et de i.
(b) Qu'en est-il de son signe sur [0;1]7?

4* Démontrer que les polynémes de Bernstein d'un méme degré n forment une partition de ['unité :
c'est-a dire, pour tout entier naturel n,

n
Z By i(p)=Bpolp)+Bpa(p)+...+ By y1(p) + By p(p) =1.
i=0

5° Déterminer la valeur des sommes

n n
Y iBni(p) et Y i*Bnilp).
i=0 i=0

(Que représentent ces sommes en termes probabilistes?

CORRECTION

Lien vidéo : https://www.youtube.com/watch?v=coGd2ykeYfge



https://www.youtube.com/watch?v=coGd2ykgYfg

