
𝑑𝑒𝑔 (𝑓 ’) =  𝑑𝑒𝑔(𝑓) − 1 

Polynômes 
 

I) Définitions 

Définition telle qu’elle est donnée dans un sujet du concours général : 

La fonction f est une fonction polynomiale : 

* si f est nulle 

* ou s’il existe un entier 𝑛 ≥ 0  et des nombres réels 𝑎0 , 𝑎1, … , 𝑎𝑛 avec 𝒂𝒏 ≠ 𝟎  tels que,  

 

pour tout nombre réel 𝑥,  𝒇(𝒙) = 𝒂𝒏𝒙𝒏 + 𝒂𝒏−𝟏𝒙𝒏−𝟏 + ⋯ + 𝒂𝟏𝒙 + 𝒂𝟎 = ∑ 𝒂𝒌𝒙𝒌𝒏
𝒌=𝟎  

 

Les nombres 𝑎0 , 𝑎1, … , 𝑎𝑛 sont alors appelés coefficients de la fonction polynômiale 𝑓. 
 

L’entier 𝑛 est appelé le degré du polynôme et le coefficient 𝑎𝑛 est appelé le coefficient dominant. 

 

Le degré d’un polynôme constant non nul est donc égal à 0 et, par convention, le degré du polynôme nul est égal à −∞ 

 

Remarque importante : L’écriture d’une fonction polynomiale étant unique, on procédera à des identifications : 

 

Proposition 1 : Une fonction polynômiale est nulle si et seulement si tous ses coefficients sont nuls. 

 

Conséquence : ∑ 𝑎𝑘𝑥𝑘𝑛
𝑘=0 =  ∑ 𝑏𝑘𝑥𝑘𝑛

𝑘=0   ∑ (𝑎𝑘 − 𝑏𝑘)𝑥𝑘𝑛
𝑘=0 = 0   ∀𝑘 ∈  ⟦0 ; 𝑛⟧ : 𝑎𝑘 = 𝑏𝑘  

 

Conséquence : Si deux polynômes sont égaux, alors ils ont le même degré. 

 

Exercice 1 :   Pour tout réel 𝑥, on a :  𝑎𝑥2 + (𝑏 − 2𝑎)𝑥 − 𝑐 =   3𝑥2 − 5𝑥 + 7    Déterminer la valeur des réels 𝑎, 𝑏 𝑒𝑡 𝑐. 

 

Correction :   {
𝑎 = 3

𝑏 − 2𝑎 = −5
−𝑐 = 7

        {
𝑎 = 3
𝑏 = 1

𝑐 = −7
 

 

Remarques : Dans la suite de ce chapitre, on confondra  un polynôme 𝑃 ( que l’on notera 𝑃(𝑋) = ∑ 𝑎𝑘𝑋𝑘𝑛
𝑘=0 ) 

         et sa fonction polynomiale 𝑓 associée         (notée : 𝑓(𝑥) = ∑ 𝑎𝑘𝑥𝑘𝑛
𝑘=0  ) 

 
        On identifiera également le polynôme dérivé 𝑃’ à la fonction dérivée associée 𝑓′ 

 

Tout cela est possible car les coefficients seront des réels dans tout ce chapitre 

 

II) Dérivation 
 

Soit 𝑓 la fonction définie pour tout réel 𝑥 par        𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0  =∑ 𝑎𝑘𝑥𝑘𝑛
𝑘=0     

On suppose que deg(𝑓) ≥ 1. 

Alors :   𝑓′(𝑥) = 𝑛𝑎𝑛𝑥𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑥𝑛−2 + ⋯ + 𝑎1   = ∑ 𝑘𝑎𝑘𝑥𝑘−1𝑛
𝑘=1  

 

      

 

 

Définition : On définit les dérivées successives de 𝑓 en posant 𝑓(0) = 𝑓 , 𝑓(1) = 𝑓′,    𝑓(2) = 𝑓′′ 

 

et pour tout entier 𝑚,   𝑓(𝑚+1) = (𝑓(𝑚))
′
         On dit que 𝑓(𝑚) est la dérivée m-ième de 𝑓 

 

 

 

 



Exercice 2 :  1) Pour tout réel 𝑥, 𝑓(𝑥) = 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0    Exprimer. 𝑓(3)(𝑥) 

 

𝑓′(𝑥) = 3𝑎3𝑥2 + 2𝑎2𝑥1 + 𝑎1 

 

𝑓′′(𝑥) = 2 ∗ 3 ∗ 𝑎3𝑥 + 1 ∗ 2 ∗ 𝑎2  
 

𝑓(3)(𝑥) = 2 ∗ 3 ∗ 𝑎3              rappel : n ! = 1*2*3…*n 

 

    2) Pour tout réel 𝑥,  𝑔(𝑥) = ∑ 𝑎𝑘𝑥𝑘𝑛
𝑘=0   avec 𝑎𝑛 ≠ 0 , Exprimer 𝑔(𝑛)(𝑥). 

 

𝑔(𝑛)(𝑥) = 𝑛 ! 𝑎𝑛   (fonction constante) 𝑒𝑡     𝑔(𝑛+1)(𝑥) =   0   
 

III) Degré 

Soient P et Q deux polynômes de degrés respectifs 𝒏 𝒆𝒕 𝒎.  

  𝑷 = 𝒂𝒏𝑿𝒏 + 𝒂𝒏−𝟏𝑿𝒏−𝟏 + ⋯ + 𝒂𝟏𝑿 + 𝒂𝟎                       Q = 𝒃𝒎𝑿𝒎 + 𝒃𝒎−𝟏𝑿𝒎−𝟏 + ⋯ + 𝒃𝟏𝑿 + 𝒃𝟎 

 

Quel est le degré de P + Q ?    Conjecture : P= 𝟑𝒙𝟑 − 𝒙𝟐 + 𝟏     𝑸 = 𝟓𝒙𝟐 − 𝒙     𝒅𝒐𝒏𝒄 𝒅𝒆𝒈 (𝑷 + 𝑸) =  𝟑 

 

𝑸𝟏 = −𝟑𝒙𝟑 + 𝒙𝟐 + 𝟑𝒙 − 𝟏      𝒅𝒆𝒈(𝑷 + 𝑸𝟏) = 𝟏 

 

 

 

 

 

 

Démonstration :  

 

Si P = Q = 0 (donc  deg(𝑃) = deg(𝑄) = −𝐶)   alors P + Q = 0 et deg(𝑃 + 𝑄) = −∞ 

 

Sinon, on pose 𝑁 = 𝑀𝑎𝑥(deg(𝑃) , deg(𝑄))  

Quitte à ajouter des coefficients nuls à P ou à Q, on peut écrire P(X) = ∑ 𝑎𝑘𝑋𝑘𝑁
𝑘=0   et Q(X) =  ∑ 𝑏𝑘𝑋𝑘𝑁

𝑘=0  
 

On a alors :  (𝑃 +  𝑄)(𝑋) = ∑ (𝑎𝑘 + 𝑏𝑘)𝑋𝑘𝑁
𝑘=0    donc deg(𝑃 + 𝑄) ≤ 𝑁   

 

Si deg(𝑃) ≠ deg(𝑄) alors 𝑎𝑁 ou 𝑏𝑁 est non nul et 𝑎𝑁 + 𝑏𝑁 ≠ 0 . Donc :  deg(𝑃 + 𝑄) = 𝑀𝑎𝑥(deg(𝑃) , deg(𝑄)) 

 

 

 

 

(en effet , le terme dominant de PQ est 𝑎𝑛𝑏𝑚𝑋𝑛+𝑚 car 𝑎𝑛𝑏𝑚  ≠ 0 ) 

 

Exercice 3: Déterminer tous les polynômes P tels que : 𝑃′(𝑋) + 𝑋 𝑃(𝑋) = 𝑋2 + 1 (*) 

(indice : Montrer d’abord que si P vérifie la relation, alors deg( 𝑃) = 1) 

Correction : 

P ne peut clairement pas être le polynôme nul car 𝑋2 + 1 𝑛′𝑒𝑠𝑡 𝑝𝑎𝑠 𝑙𝑒 𝑝𝑜𝑙𝑦𝑛ô𝑚𝑒 𝑛𝑢𝑙.  

Si 𝑑𝑒𝑔(𝑃) ≥ 2   alors 𝑑𝑒𝑔(𝑃′ + 𝑋𝑃) = 𝑑𝑒𝑔(𝑋𝑃) ≥ 3. Ce qui est impossible car 𝑑𝑒𝑔(𝑋2 + 1) = 2. 

Si deg(P)=0 alors 𝑑𝑒𝑔(𝑃′ + 𝑋𝑃) = 1   Ce qui est impossible car 𝑑𝑒𝑔(𝑋2 + 1) = 2. 

Donc 𝑑𝑒𝑔(𝑃) = 1 et il existe (𝑎 ; 𝑏) ∈ 𝑅² rel que 𝑃 = 𝑎𝑋 + 𝑏 

𝑃′ + 𝑋𝑃 = 𝑋2 + 1  𝑎 + (𝑎𝑋2 + 𝑏𝑋) = 𝑋2 + 1  𝑎𝑋2 + 𝑏𝑋 + 𝑎 = 𝑋2 + 1 𝑎 = 1 𝑒𝑡 𝑏 = 0 Donc 𝑃 = 𝑋 

Donc si P vérifie la relation (*) alors P = X    (en fait c’est le seul polynôme qui peut-être solution mais il faut encore 

vérifier qu’il est effectivement solution ) (c’est le seul candidat possible… ) 

Réciproquement, il est clair que P = X vérifie la relation (*)        Conclusion 𝑆 = {𝑋} 

Proposition 3 : deg(𝑃𝑄) = 𝑑𝑒𝑔(𝑃) + 𝑑𝑒𝑔(𝑄) 

Proposition 2 : deg(𝑃 + 𝑄) ≤ max (deg(𝑃) ; deg(𝑄)) 

 

De plus, si les deux polynômes sont de degrés distincts, il y a égalité. 

 



IV) Division euclidienne 
1) Définitions et propositions 

Définition : On dit qu’un polynôme B divise un polynôme A s’il existe un polynôme Q tel que A = BQ 

(on dit aussi que A est divisible par B ou que c’est un multiple de B ) 

Exemple: 𝑋2 − 𝑋 − 2 = (𝑋 + 1)(𝑋 − 2)    donc 𝑋 + 1 et 𝑋 − 2 divisent  𝑋2 − 𝑋 − 2 

Théorème : Si A et B sont deux polynômes ( B non nul ) alors il existe un unique couple de polynôme (Q,R) tel que : 

𝐴 =  𝐵𝑄 +  𝑅 et deg(𝑅) < deg(𝐵) 

Q et R sont respectivement appelés quotient et reste de la division euclidienne de 𝐴 par 𝑄. 

démonstration: 

 

2) Unicité :  On suppose qu’il existe deux couples de polynômes (𝑄1 , 𝑅1) et (𝑄2, 𝑅2) tels que : 

𝐴 = 𝐵𝑄1 + 𝑅1 avec deg(𝑅1) < deg(𝐵)     

         et 𝐴 = 𝐵𝑄2 + 𝑅2 avec deg(𝑅2) < deg(𝐵) 

On a donc l’égalité :   𝐵𝑄1 + 𝑅1= 𝐵𝑄2 + 𝑅2   𝐵(𝑄1 − 𝑄2) = 𝑅2  − 𝑅1 (*)  

 

Si 𝑸𝟏 ≠ 𝑸𝟐 alors 𝑄1 − 𝑄2  ≠ 0 et deg(𝐵(𝑄1 − 𝑄2)) = deg(𝐵) + deg(𝑄1 − 𝑄2) ≥ deg(𝐵)   

            or deg(𝑅2 − 𝑅1) ≤  𝑀𝑎𝑥(deg(𝑅1) , deg(𝑅2)) < deg(𝐵)  Contradiction.  Donc 𝑸𝟏 = 𝑸𝟐 

Donc, d’après (*), 𝑅1 = 𝑅2      L’unicité du couple (𝑄 , 𝑅) est ainsi prouvée. 



Définition : On dit que le nombre 𝑎 est une racine d’un polynôme 𝑃 lorsque 𝑃(𝑎) = 0 

 

 

Démonstration : 

<= Si (𝑋 − 𝑎) divise 𝑃 , alors  il existe un polynôme 𝑄 tel que 𝑃 =  (𝑋 − 𝑎)𝑄 et on a donc 𝑃(𝑎) = (𝑎 − 𝑎)𝑄(𝑎) = 0. 

  Supposons que 𝑎 soit une racine de 𝑃. effectuons la division euclidienne de 𝑃 par (𝑋 − 𝑎) 

Il existe un unique couple de polynômes (𝑄, 𝑅)tel que : P = (𝑋 − 𝑎)𝑄 +  𝑅 et deg(𝑅) < deg(𝑋 − 𝑎) = 1 

Donc le polynôme R est un polynôme constant . 

Or     0 = 𝑃(𝑎) = (𝑎 − 𝑎)𝑄(𝑎) + 𝑅(𝑎)        donc 𝑅(𝑎) = 0  et R étant constant, on a 𝑅 = 0 et  𝑃 = (𝑋 − 𝑎)𝑄 

 

Démonstration :  Récurrence sur 𝑛. 

On note :  P(n) la propriété ci-dessus. 

* P(1) est vraie d’après la propriété précédente. 

*On suppose  P(n)    vraie pour un certain 𝑛 ∈ 𝑁∗  et on considère  𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎𝑛+1 racines distinctes de 𝐴. 

D’après P(n)  , 𝐴 se factorise déjà sous la forme 𝐴 =  ∏ (𝑋 − 𝑎𝑘)𝑛
𝑘=1  𝑄        où 𝑄 est un polynôme. 

 A(𝑎𝑛+1) = ∏ (𝑎𝑛+1 − 𝑎𝑘)𝑛
𝑘=1 Q(an+1) = 0  (𝑎𝑛+1 est une racine)  

Or, les racines étant distinctes :∏ (𝑎𝑛+1 − 𝑎𝑘)𝑛
𝑘=1 ≠ 0  donc Q(an+1) = 0  et Q s’écrit donc sous la forme 

 Q = (X- 𝑎𝑛+1)𝑄1   donc  A = ∏ (𝑋 − 𝑎𝑘)𝑄1
𝑛+1
𝑘=1      et  P(n+1)  est donc vraie 

* P(n) étant vraie au rang 1 et héréditaire, on conclut qu’elle est vraie pour tout 𝑛 ∈ 𝑁∗. 

 

2) Exemples de divisions euclidiennes 

𝑓(𝑥) = 𝑥3 + 6𝑥2 − 𝑥 − 30 

On peut vérifier rapidement que -5 est une racine.   𝑓(𝑥) est donc factorisable par (𝑥 + 5) 

Voici 2 méthodes permettant d’effectuer la factorisation : 

*identification des coefficients  (voir proposition 1 et exemple 1) 

Déterminer les réels 𝑎, 𝑏 𝑒𝑡 𝑐  tels que 𝑥3 + 6𝑥2 − 𝑥 − 30 = (𝑥 + 5)(𝑎𝑥2 + 𝑏𝑥 + 𝑐) 

𝑥3 + 6𝑥2 − 𝑥 − 30 = (𝑥 + 5)(𝑎𝑥2 + 𝑏𝑥 + 𝑐)  𝑥3 + 6𝑥2 − 𝑥 − 30 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 5𝑎𝑥2 + 5𝑏𝑥 + 5𝑐 

 𝑥3 + 6𝑥2 − 𝑥 − 30 = 𝑎𝑥3 + (𝑏 + 5𝑎)𝑥2 + (𝑐 + 5𝑏)𝑥 + 5𝑐 

 {

𝑎 = 1
𝑏 + 5𝑎 = 6

𝑐 + 5𝑏 = −1
5𝑐 = −30

    {
𝑎 = 1
𝑏 = 1

𝑐 = −6
              conclusion : 𝑥3 + 6𝑥2 − 𝑥 − 30 = (𝑥 + 5)(𝑥2 + 𝑥 − 6) 

 

 

 

Proposition 4 : soit 𝑃 un polynôme.    𝑎 est une racine de 𝑃  ( X – a ) divise P 

 

Proposition 5: Soit 𝑛 ∈ 𝑁∗ et 𝑎1, 𝑎2, … , 𝑎𝑛   𝑛 racines distinctes d’un polynôme 𝐴 alors  ∏ (𝑋 − 𝑎𝑘)𝑛
𝑘=1   divise 𝐴. 

 



*On peut poser une division en suivant le même genre de protocole que dans les divisons enseignées en primaire.  

-Par quoi faut-il multiplier le x de  x + 5 pour obtenir x3 ?  par x² 

Puis on multiplie x + 5 par x² et on soustrait le résultat à x3 +6x² -x -30 

On obtient x² 

On abaisse ensuite le -x 

-Par combien faut-il multiplier le x de x+5 pour obtenir le x² bleu ? par x 

Puis on multiplie x + 5 par x et on soustrait le résultat à  x²-x 

On obtient -6x et on abaisse -30. 

- Par combien faut-il multiplier le x de x+5 pour obtenir le -6x bleu ? par -6. 

Après soustraction, on obtient un reste nul et on en conclut que 

 

𝑥3 + 6𝑥2 − 𝑥 − 30 = (𝑥 + 5)(𝑥2 + 𝑥 − 6) 

Le trinôme x² + x - 6 peut ensuite se factoriser facilement en déterminant ses racines. 

On obtient : 𝒙𝟑 + 𝟔𝒙𝟐 − 𝒙 − 𝟑𝟎 = (𝒙 + 𝟓)(𝒙 − 𝟐)(𝒙 + 𝟑) 

 

Attention : Le reste d’une division n’est pas toujours nul. 

 

Exercice 4 : Effectuer la division euclidienne de  𝑥4 +  3𝑥3 −  2𝑥2 +  7𝑥 −  12  par 𝑥2 − 1 

La division s’arrêt lorsque le degré du reste est strictement  

inférieur à celui du diviseur. 

On obtient ainsi : 𝒙𝟒 +  𝟑𝒙𝟑 −  𝟐𝒙𝟐 +  𝟕𝒙 −  𝟏𝟐  = (x² – 1)(x² + 3x – 1) + 10x – 13  

 

Exercice 5 :  Effectuer la division euclidienne de 6𝑥4 − 2𝑥3 + 9𝑥2 − 2𝑥 − 2  par   𝑥2 + 2 

 

 

 

 

 

  

 

 

 

 

 

 

 



3) Application : Lever une forme indéterminée dans le calcul d’une limite  

Exercice 6 : Déterminer lim
𝑥→2

𝑥3+𝑥−10

2𝑥2−𝑥−6
      

C’est un cas sournois d’indétermination de type 0/0. 

L’idée est de factoriser par (𝑥 − 2) le numérateur (par exemple en le divisant par (𝑥 − 2)) et le dénominateur. 

On peut ensuite procéder à une simplification et le tour est joué ! 

lim  
𝑥→2

𝑥3 + 𝑥 − 10

2𝑥2 − 𝑥 − 6
 = lim  

𝑥→2

(𝑥 − 2)(𝑥2 + 2𝑥 + 5)

(𝑥 − 2)(2𝑥 + 3)
 =  lim

𝑥→2

𝑥2 + 2𝑥 + 5

2𝑥 + 3
=

13

7 
 

 

Attention , graphiquement, on visualise bien le fait que la fonction n’est pas définie en  −
3

2
  mais il faut garder en tête 

qu’elle n’est pas non plus définie en 2. 

Il y a en fait un « trou » (invisible) dans le tracé de la courbe : elle est discontinue en 2. 

Par contre , si on pose : 𝑓(2) =
13

7
 alors elle devient continue en 2. 

On dit que l’on a effectué un prolongement par continuité en 2. 

 

 

 

 

 

 

 

 

  

 

 

Conséquence : Un polynôme non nul de degré 𝒏 ≥ 𝟏 admet maximum 𝒏 racines 

Démonstration : 

 Evident 

<=  Si A admet au moins 𝑛 + 1 racines distinctes, alors d’après la proposition précédente : 

 A = ∏ (𝑋 − 𝑎𝑘)𝑄1
𝑛+1
𝑘=1    où 𝑄1 est un polynôme. 

Si 𝑄1 ≠ 0 , on aurait deg(𝐴) = deg(∏ (𝑋 − 𝑎𝑘)𝑄1
𝑛+1
𝑘=1 ) ≥ 𝑛 + 1, ce qui est impossible car deg(𝐴) ≤ 𝑛.  

        Il y a une contradiction donc on en déduit que notre hypothèse est fausse 

 Donc 𝑄1 = 0 et par conséquent, A = 0. 

 

 

 

Proposition 6 : Soit 𝑛 ∈ 𝑁 et A un polynôme de degré au plus 𝑛.    

A est le polynôme nul  A admet au moins 𝑛 + 1 racines distinctes 



 

 

 APPLICATION : Les polynômes de LAGRANGE 

Soit 𝑓 ∶ [𝑎, 𝑏] → 𝑅 une fonction pour laquelle on connaît les images de 𝑛 + 1 nombres distincts 𝑥0, 𝑥1, … , 𝑥𝑛 de 

l’intervalle [𝑎 ; 𝑏] 

Le but est de construire une fonction polynomiale P de degré inférieur ou égal à 𝒏 

dont la courbe représentative passe par les points 𝑨𝟎(𝒙𝟎 , 𝒇(𝒙𝟎)) ,  𝑨𝟏(𝒙𝟏 , 𝒇(𝒙𝟏)) …. 𝑨𝒏(𝒙𝒏 , 𝒇(𝒙𝒏)) 

c’est-à-dire que :    ∀ 𝑗 ∈  ⟦0, 𝑛⟧      𝑷(𝒙𝒋) = 𝒇(𝒙𝒋)   

 

Théorème : Si une telle fonction P existe, alors elle est unique. 

Démonstration : Soit 𝑄 un autre polynôme solution de notre problème. 

Alors ∀ 𝑗 ∈  ⟦0, 𝑛⟧     𝑄(𝑥𝑗) − 𝑃(𝑥𝑗) = 𝑓(𝑥𝑗) − 𝑓(𝑥𝑗) = 0   𝑒𝑡 𝑑𝑜𝑛𝑐 (𝑄 − 𝑃)(𝑥𝑗) = 0 

Donc le polynôme Q-P a   n+1 racines   or  deg (Q-P) ≤ 𝑛 donc d’après la proposition précédente, Q-P est le polynôme 

nul. Donc Q=P . 

Théorème : Il existe un  polynôme solution de ce problème (et il est donc unique d’après le théorème précédent) 

Ce polynôme s’écrit   :   

𝑃𝑛(𝑥) = ∑ 𝑓(𝑥𝑖)𝐿𝑖(𝑥)𝑛
𝑖=0    où   𝐿𝑖(𝑥) = ∏

(𝑥−𝑥𝑘)

(𝑥𝑖−𝑥𝑘)
 𝑛  

𝑘=0 𝑘≠𝑖
 

 

Le polynôme 𝑃𝑛 est appelé polynôme d’interpolation de Lagrange de la fonction 𝑓 aux points 𝑥0, 𝑥1, … , 𝑥𝑛 

Les polynômes 𝐿𝑖(𝑥) sont applelés polynômes de base de Lagrange associés à ces points. 

Démonstration : 

*Existence : Il suffit de vérifier que le polynôme proposé est bien solution du problème. 

Remarquons d’abord que  

∀ 𝑗 ∈  ⟦0, 𝑛⟧        ∶        𝐿𝑖(𝑥𝑗) = ∏
(𝑥𝑗 − 𝑥𝑘)

(𝑥𝑖 − 𝑥𝑘)
 =

𝑛

 𝑘≠𝑖

(∏(𝑥𝑗 − 𝑥𝑘))/(∏(𝑥𝑖 − 𝑥𝑘)) 

𝑛

𝑘≠𝑖

𝑛

𝑘≠𝑖

= 𝛿𝑖,𝑗 = {
1 𝑠𝑖 𝑖 = 𝑗
0 𝑠𝑖 𝑖 ≠ 𝑗

 

En effet : 

Si 𝑖 ≠ 𝑗 : 𝑘 prend toutes les valeurs autres que 𝑖 , donc il prendra la valeur 𝑗 à un moment donné et le numérateur sera nul. 

Si 𝑖 = 𝑗 :    Le numérateur est égal au dénominateur…. 

Le polynôme 𝑃𝑛(𝑥) = ∑ 𝑓(𝑥𝑖)𝐿𝑖(𝑥) 𝑛
𝑖=0 convient car : 

  ∀ 𝑗 ∈  ⟦0, 𝑛⟧ ∶ 𝑷𝒏(𝒙𝒋) = ∑ 𝑓(𝑥𝑖)𝐿𝑖(𝑥𝑗) = 𝑛
𝑖=0  𝒇(𝒙𝒋) ∗ 𝑳𝒋(𝒙𝒋)= 𝒇(𝒙𝒋) 

En effet,comme indiqué ci-dessus, pour toutes les valeurs de  i différentes de 𝑗 ,   𝐿𝑖(𝑥𝑗) = 0. 



 

 

Exercice 7 : Le but est de construire une fonction polynomiale P de degré inférieur ou égal à 𝒏 = 𝟐 

dont la courbe représentative passe par les 3 points 𝑨𝟎(−𝟏 ; 𝟔)  𝑨𝟏(𝟏 ; 𝟎) …. 𝑨𝟐(𝟐 ; 𝟑) 

𝑷𝒏(𝒙) = ∑ 𝑓(𝑥𝑖)𝐿𝑖(𝑥) =  2
𝑖=0 𝑓(𝑥0)𝐿0(𝑥) + 𝑓(𝑥1)𝐿1(𝑥) + 𝑓(𝑥2)𝐿2(𝑥) 

Exrpimons d’abords les polynômes de base 𝐿0 et 𝐿2 

Il est inutile de s’intéresser à 𝐿1 car 𝑓(𝑥1) = 𝑓(1) = 0 d’après l’énoncé.                   𝐿𝑖(𝑥) = ∏
(𝑥−𝑥𝑘)

(𝑥𝑖−𝑥𝑘)
 𝑛  

𝑘=0 𝑘≠𝑖
       

𝑳𝟎(𝒙) = ∏
(𝑥 − 𝑥𝑘)

(𝑥0 − 𝑥𝑘)
 =

𝑥 − 𝑥1

𝑥0 − 𝑥1
 ∗  

𝑥 − 𝑥2

𝑥0 − 𝑥2
 

2

 𝑘=1

=
𝑥 − 1

−2
∗

𝑥 − 2

−3
 =

1

6
 (𝑥2 − 3𝑥 + 2) 

 

𝑳𝟐(𝒙) = ∏
(𝑥 − 𝑥𝑘)

(𝑥2 − 𝑥𝑘)
 =

𝑥 − 𝑥0

𝑥2 − 𝑥0
 ∗  

𝑥 − 𝑥1

𝑥2 − 𝑥1
 

1

 𝑘=0 

=
𝑥 + 1

3
∗

𝑥 − 1

1
 =

1

3
 (𝑥2 − 1) 

 

𝑷𝒏(𝒙) = 𝑓(−1)𝐿0(𝑥) + 𝑓(2)𝐿2(𝑥)=6 ∗ 
1

6
 (𝑥2 − 3𝑥 + 2) + 3 ∗

1

3
 (𝑥2 − 1) = 𝟐𝒙𝟐 − 𝟑𝒙 + 𝟏 

On vérifie bien sûr que les 3 images sont correctes… 

Pour s’entraîner sur un autre exemple, il suffit d’écrire une fonction polynomiale de degré 𝑛 , de déterminer l’image de 

𝑛 + 1 nombres et de « s’amuser »  à retrouver la fonction grâce aux polynômes de Lagrange. 

ATTENTION : il y a une autre méthode pour déterminer un tel polynôme : 𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

a) On sait que 𝑃(−1) = 6 , 𝑃(1) = 0 𝑒𝑡 𝑃(2) = 3   et on obtient donc le système suivant : {
𝑎 − 𝑏 + 𝑐 = 6
 𝑎 + 𝑏 + 𝑐 = 0

4𝑎 + 2 𝑏 + 𝑐 = 3
 

qui s’écrit sous la forme 𝐴𝑋 = 𝐵 avec A =  
1 −1 1
1 1 1
4 2 1

     ,   𝑋 =  (
𝑎
𝑏
𝑐

)  et B = (
6
0
3

)   

on résout l’équation :        𝐴−1𝐴𝑋 = 𝐴−1𝐵  on a donc X =𝐴−1𝐵  et          𝑋 =  (
2

−3
1

)   

 

Preuve : 

 X² - SX + P  =  X²-(𝑥1 + 𝑥2)X + 𝑥1 𝑥2 = (X-𝑥1)(X – 𝑥2)  donc 𝑥1 𝑒𝑡 𝑥2 sont bien les racines du polynôme 

<=  𝑥1 =
𝑆+√𝑆2−4𝑃

2
      et 𝑥2 =

𝑆−√𝑆2−4𝑃

2
      on a bien  𝑥1 + 𝑥2 = 𝑆   et   𝑥1 𝑥2 = 𝑃 

Exercice 8 :  

1) On remarque que 2 est solution de l’équation 𝑥2 − 5𝑥 + 6 = 0.   Quelle est l'autre solution ?  

2) Un rectangle peut-il avoir un périmètre de 16m et une aire de 8 m² ? Si oui, donner sa longueur et sa largeur. 

Proposition 7 : Relations coefficients/racines : polynôme de degré 2 

Soient S, P, 𝑥1, 𝑥2 quatre nombres réels. 

{
𝑥1 + 𝑥2 = 𝑆

𝑥1 𝑥2 = 𝑃            𝑥1 𝑒𝑡 𝑥2 sont les racines du polynômes X² - SX + P 

 

 



Correction : 

1) le produit des racines est égal à 6.  Donc la deuxième racine est 3. 

On aurait pu dire aussi : la somme des racines vaut -(-5) soit 5, et on retrouve 3 comme deuxième racine réelle.  

 

2/ soit x1 la longueur et x2 la largeur du rectangle  

   Périmètre = 16  2x1+2x2 = 16    2(x1+x2) = 16     x1+x2 = 8 =S  et aire = 8    x1x2 = 8 =P  

 

Donc x1 et x2 seraient les racines réelles de l'équation x² - 8x + 8 = 0 (*) d'après la proposition 6. 

 Le discriminant est positif, donc l'équation (*) admet 2 racines réelles: 𝑥1 = 4 + 2√2  et 𝑥1 = 4 − 2√2   

 

V) Multiplicité (ou ordre) d’une racine  

 

Définition :  𝑎 est une racine de multiplicité 𝑚 ≥ 1 si (𝑋 − 𝑎)𝑚 divise A et que (𝑋 − 𝑎)𝑚+1 ne divise pas A. 

Si 𝑚=1 , on parle de racine simple.   Si 𝑚=2 , on parle de racine double.   Si 𝑚=3 , on parle de racine triple. 

Illustration : 𝑃(𝑋) = 𝑋2 − 6𝑋 + 9     ∆ = 0    𝑑𝑜𝑛𝑐 𝑢𝑛𝑒 𝑟𝑎𝑐𝑖𝑛𝑒 double ou de multiplicité 2 :  𝑥0 = 3 

Donc 𝑃(𝑋) = (𝑋 − 3)²          𝑃′(𝑋) = 2𝑋 − 6       P’’(X)=2      3 est bien racine de P et de P’ mais pas de P’’ 

 

Exercice 9: multiplicité d’une racine 

Soient 𝑎 et 𝑏 deux réels et P le polynôme tel que 𝑃(𝑋) = 𝑋4 + 𝑎𝑋3 + 𝑏𝑋2 + 𝑎𝑋 + 1 

1) Montrer que si le réel 1 est racine de P, son ordre de multiplicité est au moins 2. 

 

2) Existe-t-il des réels 𝑎 et 𝑏 tels que le réel 1 soit racine de P d’ordre supérieur à 2 ? 

Si oui, quel est alors son ordre de multiplicité ? 

Correction : 

Proposition 8 : soit 𝑃 un polynôme. 

𝑎 est une racine d’ordre 𝑚 ≥ 1 de P   𝑃(𝑎) = …= 𝑃(𝑚−1)(𝑎) = 0 et 𝑃(𝑚)(𝑎) ≠ 0 

 



 

 

 

 

 

  



Exercice 10 : multiplicité d’une racine 

Soit 𝑃 un polynôme. 

On appelle 𝑄 le polynôme défini par 𝑄(𝑋) = (𝑋 − 𝑎)(𝑃′(𝑋) + 𝑃′(𝑎)) − 2( 𝑃(𝑋) − 𝑃(𝑎)) 

Montrer que 𝑎 est une racine d’ordre supérieur ou égal à 2. 

Il faut montrer que a est racine de Q et de sa dérivée  ( 𝑄(𝑎) = 𝑄′(𝑎) = 0) 

𝑄(𝑎) = (𝑎 − 𝑎)(𝑃′(𝑎) + 𝑃′(𝑎)) − 2( 𝑃(𝑎) − 𝑃(𝑎)) 

𝑄(𝑎) = 0 ∗ (𝑃′(𝑎) + 𝑃′(𝑎)) − 2 ∗ 0 = 0 

Attention : pour dériver Q , on pose U=X-a et V = P’(X)+P’(a)   et on utilise la formule du produit. 

De plus, attention, P’(a) et P(a) sont des constantes. 

𝑄′(𝑋) = (𝑃′(𝑋) + 𝑃′(𝑎)) + (𝑋 − 𝑎)𝑃′′(𝑋) − 2 𝑃′(𝑋) 

Donc  

𝑄′(𝑎) = (𝑃′(𝑎) + 𝑃′(𝑎)) + (𝑎 − 𝑎)𝑃′′(𝑎) − 2 𝑃′(𝑎) = 0 

 

 

VI) Exercices  

Exercice 11 : Les polynômes de Tchebychev 

On définit une suite de polynômes (𝑇𝑛)𝑛∈𝑁 de la manière suivante : 

𝑇0(𝑋) = 1,   𝑇1(𝑋) = 𝑋  , 𝑒𝑡   ∀𝑛 ∈ 𝑁 ∶ 𝑇𝑛+2(𝑋) = 2𝑋𝑇𝑛+1(𝑋) − 𝑇𝑛(𝑋) 

1) Calculer 𝑇2, 𝑇3 𝑒𝑡 𝑇4 

 

 
2) Prouver par récurrence que pour tout entier naturel 𝑛 ∶   deg( 𝑇𝑛) = 𝑛 puis  déterminer le coefficient dominant 

de 𝑇𝑛 

 
 

 

 

 



3) Etude de la parité 

a) Conjecturer la parité de 𝑇𝑛 en fonction de 𝑛 

b) Prouver par récurrence que :  ∀𝑛 ∈ 𝑁   𝑇𝑛(−𝑋) = (−1)𝑛𝑇𝑛(𝑋) 

 
 

4) Prouver que  ∀𝑛 ∈ 𝑁   , 𝑇𝑛(1) = 1 

 

5) Montrer que ∀ (𝑚, 𝑛) ∈ 𝑁2  ,    𝑚 ≤ 𝑛  ⇒  2𝑇𝑛𝑇𝑚 = 𝑇𝑚+𝑛 + 𝑇𝑛−𝑚 

 

6) Montrer que ∀ (𝑚, 𝑛) ∈ 𝑁2  ,    𝑇𝑚(𝑇𝑛(𝑋)) = 𝑇𝑚𝑛(𝑋) 

 

 



Exercice 12 : On recherche les polynômes non nuls divisibles par leur propre dérivée 

 

1) Vérifier que les polynômes 𝑃(𝑋) =  𝑋 ;   𝑃(𝑋) = 𝑋 − 1    𝑒𝑡 𝑃(𝑋) = (𝑋 + 1)2 font partie des solutions 

2) On suppose que le polynôme P , de degré 𝑛 , de coefficient dominant 𝑎𝑛, est divisible par son polynôme P’. 

a) Démontrer que 𝑛 ≥ 1  
 

 

 

b) Démontrer qu’il existe un réel ∝ tel que 𝑃(𝑋) =
1

𝑛
 (𝑋−∝)𝑃′(𝑋) 

 

 

c) Démontrer que si 𝑘 𝑒𝑠𝑡 𝑢𝑛 𝑒𝑛𝑡𝑖𝑒𝑟 0 ≤ 𝑘 ≤ 𝑛  alors 𝑃(𝑘)(𝑋) =
1

𝑛−𝑘
 (𝑋−∝)𝑃(𝑘+1)(𝑋) 



 

d)    Démontrer que le polynôme 𝑃 vérifie l’égalité 𝑃(𝑋) = 𝑎𝑛(𝑋−∝)𝑛 

 

 

 

 

 

 

3)   Soit 𝐴(𝑋) =  𝛿 (𝑋 − 𝛼)𝑛   𝑜ù (𝑛, 𝛿, 𝛼) ∈ 𝑁∗𝘹 𝑅∗𝘹 𝑅∗ 

Vérifier que le polynôme A est une solution du problème 

 

4) Décrire l’ensemble des solutions du problème. 

 

 

 

 

 

 

 

 

 



VII) EXTRAITS DU CONCOURS GENERAL 
1) Exercice 1 du sujet 2019 

 

 

 

 

 

 



CORRECTION 



 

 

 

 

 

 

 



Exercice 1 du sujet 2018 : Les polynômes de Bernstein 

 

CORRECTION 

Lien vidéo :  https://www.youtube.com/watch?v=coGd2ykgYfg 

 

 

 

 

 

 

https://www.youtube.com/watch?v=coGd2ykgYfg

