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Arithmétique – Partie 2 – Corrigé de la séance du 28 janvier 
 

I. Congruence 
 
Définition I.1 : Soient 𝑚, 𝑛 deux entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2. On dit que 𝑚 et 𝑛 sont 
congrus modulo 𝑑 si 𝑛	 − 	𝑚 est divisible par 𝑑. On note alors 𝑛	 ≡ 𝑚	[𝑑] 
 
Exemple I.2 :	8	 ≡ 2	[3]	car 8 − 2 = 6 est divisible par 3. 
 
Remarque I.3 : Soit 𝑎 un entier relatif et 𝑏 un entier relatif non nul. Il existe (division euclidienne de 𝑎 par 𝑏) un unique 
couple (𝑞	; 𝑟) 	∈ ℤ! tel que 7𝑎 = 𝑏𝑞 + 𝑟

0 ≤ 𝑟 < |𝑏|. 

Donc 𝑎 − 𝑟 = 𝑏𝑞 et donc 𝑎	 ≡ 𝑟	[𝑏]. 
 
Remarque I.4 : Attention ! 
Si 𝑎	 ≡ 𝑟	[𝑏],alors 𝑟 n’est pas forcément le reste de la division euclidienne de 𝑎 par 𝑏.  
 
Contre-exemple I.5 : 
65 − (−5) = 70 = 7 × 10 donc 65 ≡ −5[7] mais 65 = 7 × 10 − 5 n’est pas la division euclidienne de 65 par 7, celle-ci 
étant 65 = 7 × 9 + 2. 
 
Remarque I.6 : Soient 𝑚, 𝑛 deux entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2. Alors par définition : 

𝑛	 ≡ 𝑚	[𝑑] si et seulement s’il existe 𝑘	 ∈ ℤ tel que 𝑛	 = 	𝑚	 + 	𝑘𝑑. 
 
Propriété I.7 : 
Soient 𝑚,𝑛,𝑚′, 𝑛′	quatre entiers relatifs et 𝑑 un entier naturel supérieur ou égal à 2.  
Si 𝑛	 ≡ 𝑚	[𝑑] et 𝑛′	 ≡ 𝑚′	[𝑑] alors : 
 

1) 𝑛	 + 	𝑛′	 ≡ 	𝑚	 + 	𝑚′	[𝑑] 
2) 𝑛𝑛′	 ≡ 	𝑚𝑚′	[𝑑] 
3) ∀	𝑝 ∈ ℕ, 		𝑛	" ≡ 𝑚"	[𝑑] 
4) ∀	𝑎 ∈ ℤ, 𝑎𝑛	º	𝑎𝑚	[𝑑] 

 
Démonstration :  
Si 𝑛	 ≡ 𝑚	[𝑑]	et	𝑛′	 ≡ 		𝑚′	[𝑑] alors il existe (𝑘; 𝑘′) 	∈ ℤ! tels que : H 𝑛	 = 	𝑚	 + 	𝑘𝑑	

𝑛′	 = 	𝑚′	 + 	𝑘′𝑑. 
Donc : 

1) 𝑛	 + 	𝑛′	 = 	𝑚	 + 	𝑚′	 +	(𝑘	 + 	𝑘′)𝑑 
Or 𝑘	 + 	𝑘′	 ∈ ℤ donc 𝑛	 + 	𝑛′	 ≡ 	𝑚	 + 	𝑚′	[𝑑]. 
 

2) 𝑛	 ×	𝑛# = (𝑚	 + 	𝑘𝑑) × (	𝑚# +	𝑘#𝑑) = 		𝑚	 × 	𝑚′	 +	(𝑘𝑚′	 + 	𝑘′𝑚	 + 	𝑘𝑘′)𝑑.  
Or 𝑘𝑚′ + 	𝑘′𝑚	 + 	𝑘𝑘′	 ∈ ℤ donc 𝑛	 × 	𝑛′	º		𝑚	 × 	𝑚′	[𝑑]. 
 

3) 𝑛" 	−	𝑚" 	= 	 (𝑛	 − 	𝑚)(𝑛"$% 	+	𝑛"$!𝑚	 +	…	+	𝑚"$%) (Égalité de Bernouilli, voir ci-après) 
Or 𝑛	 − 	𝑚	 ≡ 	0	[𝑑] et 𝑛"$% 	+	𝑛"$!𝑚	 +	…	+	𝑚"$% ∈ ℤ donc 𝑛" 	−	𝑚" 	≡ 	0	[𝑑] ie 𝑛" 	≡ 𝑚"	[𝑑]. 
 

4) 𝑎𝑛	 = 	𝑎(𝑚	 + 	𝑘𝑑) = 𝑎𝑚	 + 	𝑎𝑘𝑑.  
Or 𝑎𝑘	 ∈ ℤ donc 𝑎𝑛	 ≡ 	𝑎𝑚	[𝑑] 

 
Remarque I.8 : Attention !  
Les réciproques sont fausses. 
 
Propriété I.9 : (égalité de Bernouilli) 
Soient 𝑎, 𝑏 deux nombres réels et 𝑛 un entier naturel supérieur ou égal à 1. 
 
Alors : 𝑎& − 𝑏& = (𝑎 − 𝑏)∑ 𝑎&$'$%𝑏'&$%

'() = (𝑎 − 𝑏)(𝑎&$% + 𝑎&$!𝑏 +⋯+ 𝑎𝑏&$! + 𝑏&$%). 
 
Démonstration : 

(𝑎 − 𝑏)M𝑎&$'$%𝑏'
&$%

'()

= 𝑎M𝑎&$'$%𝑏'
&$%

'()

− 𝑏M𝑎&$'$%𝑏'
&$%

'()

 

																																				= M𝑎&$'𝑏'
&$%

'()

−M𝑎&$'$%𝑏'*%
&$%

'()
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																									= M𝑎&$'𝑏'
&$%

'()

−M𝑎&$+𝑏+
&

+(%

 

																																														= 𝑎& +M𝑎&$'𝑏'
&$%

'(%

−M𝑎&$+𝑏+
&$%

+(%

− 𝑏& 

																																																																																																								= 𝑎& − 𝑏& 
 
Application I.10 : Puissances d'un entier 
Déterminer les restes de la division par 5 des puissances de 2&  pour 𝑛 ∈ ℕ. 
 
Solution : 

2) = 	1	 ≡ 1	[5] 
2% = 	2	 ≡ 2	[5] 
2! = 	4	 ≡ 4	[5] 
2, = 	8	 ≡ 3	[5] 
2- = 	16	 ≡ 1	[5] 
2. = 	32	 ≡ 2	[5] 
2/ = 	64	 ≡ 4	[5] 

… 
On constate une périodicité. 
Soit 𝑛 ∈ ℕ. Ce qui précède donne l’idée d’effectuer la division euclidienne de 𝑛 par 4. 
Il existe 𝑞 ∈ ℕ et 𝑟 ∈ ℕ tels que 𝑛 = 4𝑞 + 𝑟 et 0 ≤ 𝑟 < 4. 
Alors : 

2& = 2-0*1 = (2-)0 × 21 	≡ 10 × 21	[5] ≡ 21[5] 
On obtient synthétiquement : 
 

𝑟 0 1 2 3 

Reste de la division de 2-0*1 par 5 1 2 4 3 
 

II. Algorithme d’Euclide et PGCD de deux entiers 
 

1. Algorithme d’Euclide 
 
Soient 𝑎 et 𝑏 deux entiers. On note 𝐷(𝑎) l’ensemble des diviseurs de 𝑎 et 𝐷(𝑎, 𝑏) l’ensemble des diviseurs communs 
de 𝑎 et 𝑏. 
 
Lemme II.1 : Si 𝑎 et 𝑏 sont deux entiers, alors  𝐷(𝑎, 𝑏) = 𝐷(|𝑎|, |𝑏|) 
 
Démonstration : Il s’agit de prouver une égalité ensembliste. Nous allons procéder par double inclusion. 
 
⊂ Soit 𝑑 ∈ 𝐷(𝑎, 𝑏). 
En particulier, 𝑑 divise 𝑎 donc 𝑑 divise ±𝑎 et donc 𝑑 divise |𝑎| 
De même, 𝑑 divise |𝑏|. 
Donc 𝑑 ∈ 𝐷(|𝑎|, |𝑏|). 
 
⊃ Raisonnement similaire, laissé au lecteur. 
 
Remarque II.2 : ce lemme permet de limiter la recherche des diviseurs communs de deux nombres entiers à ceux de 
leurs valeurs absolues, c’est-à-dire de deux nombres entiers naturels. 
 
Lemme II.3 : Si 𝑎 et 𝑏 sont deux entiers naturels avec 𝑏 > 0 et si 𝑟 désigne le reste de la division euclidienne de 𝑎 par 
𝑏, alors 𝐷(𝑎, 𝑏) = 𝐷(𝑏, 𝑟). 
 
Démonstration : Également par double inclusion. 
Notons 𝑞 le quotient de la division euclidienne de 𝑎 par 𝑏, de sorte que 7𝑎 = 𝑏𝑞 + 𝑟

0 ≤ 𝑟 < |𝑏|. 

⊂ Soit 𝑑 ∈ 𝐷(𝑎, 𝑏). 
Alors 𝑑 divise 𝑎 et 𝑏. 
De plus 𝑟 = 𝑎 − 𝑏𝑞 donc 𝑑 divise 𝑟. 
Donc 𝑑 ∈ 𝐷(𝑏, 𝑟). 
 
⊃ Raisonnement similaire, laissé au lecteur. 
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Remarque II.4 : ce lemme permet de remplacer la recherche des diviseurs communs de 𝑎 et 𝑏 à ceux de 𝑏 et 𝑟, avec 
0 ≤ 𝑟 < |𝑏|. 
 
Lemme II.5 : Si 𝑎	est entier, alors  𝐷(𝑎, 0) = 𝐷(𝑎) 
 
Démonstration : Également par double inclusion, laissée au lecteur. 
 
Remarque II.6 : ce lemme permet de conclure si un des deux entiers est nul. 
 
Application II.7 : algorithme d’Euclide 
Soient 𝑎 et 𝑏 deux entiers. 
Notons 𝑟) = |𝑎| et 𝑟% = |𝑏|. D’après le lemme II.1 : 𝐷(𝑎, 𝑏) = 𝐷(𝑟), 𝑟%). 
 

• Étape 1 : 
§ Si 𝑟% = 0, alors 𝐷(𝑟), 𝑟%) = 𝐷(𝑟)) d’après le lemme II.5. 
§ Sinon, on effectue la division de 𝑟)	par 𝑟% : ∃! (𝑞%	; 𝑟!) 	∈ ℕ! tel que 7

𝑟) = 𝑟%𝑞% + 𝑟!
0 ≤ 𝑟! < 𝑟%

. 
On a alors d’après le lemme II.3 : 𝐷(𝑟), 𝑟%) = 𝐷(𝑟%, 𝑟!). 
 

• Étape 2 : 
§ Si 𝑟! = 0, alors 𝐷(𝑟%, 𝑟!) = 𝐷(𝑟%) d’après le lemme II.5. 
§ Sinon, on effectue la division de 𝑟%	par 𝑟! : ∃! (𝑞!	; 𝑟,) 		 ∈ ℕ! tel que 7

𝑟% = 𝑟!𝑞! + 𝑟,
0 ≤ 𝑟, < 𝑟!

. 
On a alors d’après le lemme II.3 : 𝐷(𝑟%, 𝑟!) = 𝐷(𝑟!, 𝑟,). 

… 
On obtient une suite d’entiers naturels (𝑟')'2)	strictement décroissante, donc ∃𝑁 ≥ 0 tel que 𝑟3 ≠ 0 et 𝑟3*% = 0. 
De plus 𝐷(𝑟), 𝑟%) = 	𝐷(𝑟%, 𝑟!) = 𝐷(𝑟!, 𝑟,) 	= ⋯ = 	𝐷(𝑟3, 𝑟3*%) = 𝐷(𝑟3). 
 
Exemple II.8 : Chercher avec l’algorithme d’Euclide les diviseurs communs de 56 et 12. 
 
Solution : 

• 56 = 4 × 12 + 8, donc 𝐷(56,12) = 𝐷(12,8). 
• 12 = 1 × 8 + 4, donc 𝐷(12,8) = 𝐷(8,4). 
• 8 = 2 × 4 + 0, donc 𝐷(8,4) = 𝐷(4,0). 
• D’après le lemme II.5, 𝐷(4,0) = 𝐷(4). 

Conclusion : les diviseurs communs de 56 et 12 sont ceux de	4, c’est-à-dire ±1,±2,±4. 
 

2. PGCD de deux entiers 
 
Propriété II.9 :  
Soient 𝑎 et 𝑏 deux entiers.  
Alors il existe un unique entier naturel, noté 𝑎 ∧ 𝑏 (ou 𝑃𝐺𝐶𝐷(𝑎	; 𝑏)) appelé plus grand commun diviseur de 𝑎 et 𝑏 tel 
que : 

1) 𝑎 ∧ 𝑏 divise 𝑎 et 𝑏 
2) Tout diviseur de 𝑎 et 𝑏 divise 𝑎 ∧ 𝑏 

De plus, ce PGCD, nul si 𝑎 et 𝑏 sont nuls, est, dans tous les autres cas, égal au dernier reste non nul dans 
l’algorithme d’Euclide appliqué à |𝑎|et |𝑏|. 
 
Démonstration : On suppose 𝑎 et 𝑏 non nuls. 

• Unicité : Soient 𝑑 et 𝑑’ deux entiers naturels vérifiant 1) et 2).  
D’après 1), 𝑑 est un diviseur commun de 𝑎 et 𝑏, donc d’après 2), 𝑑 divise 𝑑’. 
De même 𝑑′ divise 𝑑. 
Comme 𝑑 et 𝑑′ sont positifs, alors 𝑑 = 𝑑’. 
• Existence : Notons 𝑟3 le dernier reste non nul dans l’algorithme d’Euclide appliqué à |𝑎|et |𝑏|. 
C’est un entier naturel et d’après les lemmes précédents : 𝐷(𝑎, 𝑏) = 	𝐷(|𝑎|, |𝑏|) = 𝐷(𝑟3). Donc : 

o 𝑟3	divise 𝑎 et 𝑏 
o Tout diviseur de 𝑎 et 𝑏 divise 𝑟3 

Par unicité 𝑟3 = 𝑎 ∧ 𝑏. 
 
Exemple II.10 : Déterminer le PGCD de 2952 et 516. 
 
Solution : 

2952	 = 	516	 × 	5	 + 	372 
516	 = 	372	 × 	1	 + 	144 
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372	 = 	144	 × 2	 + 	84 
144	 = 	84	 × 	1	 + 	60 
84	 = 	60 × 	1	 + 	24	
60	 = 	24	 × 2	 + 	12	
24	 = 	12	 × 2	 + 	0	

 
Donc 2952 ∧ 516 = 12. 
 

3. Égalité de Bézout 
 
Propriété II.11 : Soient 𝑎 et 𝑏 deux entiers.  
Alors il existe deux entiers 𝑢 et 𝑣 (mais pas nécessairement uniques) tels que : 𝑎𝑢 + 𝑏𝑣 = 𝑎 ∧ 𝑏 
 
Démonstration : on reprend les notations utilisées pour l’algorithme d’Euclide avec 𝑟) = |𝑎| et 𝑟% = |𝑏|. On a : 

(0) 𝑢4𝑎 + 𝑣)𝑏 = 𝑟), avec 𝑢) = ±1 et 𝑣) = 0 
(1) 𝑢%𝑎 + 𝑣%𝑏 = 𝑟%, avec 𝑢% = 0 et 𝑣% = ±1 

 
On écrit 𝑟) = 𝑟%𝑞% + 𝑟!	avec 0 ≤ 𝑟! < 𝑟%, puis l’égalité (2) = (0) − 𝑞% × (1) : 

(2) 𝑢4𝑎 + 𝑣)𝑏 − 𝑞% × (𝑢%𝑎 + 𝑣%𝑏) = 𝑟) − 𝑞%𝑟% 
Soit : (𝑢) − 𝑞%𝑢%)𝑎 + (𝑣) − 𝑞%𝑣%)𝑏 = 𝑟) − 𝑞%𝑟% 
On obtient : 𝑢!𝑎 + 𝑣!𝑏 = 𝑟!, avec : 𝑢! = 𝑢) − 𝑞%𝑢% et 𝑣! = 𝑣) − 𝑞%𝑣% 
 

On écrit 𝑟% = 𝑟!𝑞! + 𝑟,	avec 0 ≤ 𝑟, < 𝑟%, puis l’égalité (3) = (1) − 𝑞! × (2) : 
(3) 𝑢%𝑎 + 𝑣%𝑏 − 𝑞! × (𝑢!𝑎 + 𝑣!𝑏) = 𝑟% − 𝑞!𝑟! 

Soit : (𝑢% − 𝑞!𝑢!)𝑎 + (𝑣% − 𝑞!𝑣!)𝑏 = 𝑟% − 𝑞!𝑟! 
On obtient : 𝑢,𝑎 + 𝑣,𝑏 = 𝑟,, avec : 𝑢, = 𝑢% − 𝑞!𝑢! et 𝑣, = 𝑣% − 𝑞!𝑣! 
 

On poursuit le processus jusqu’au premier reste nul : 𝑟3$% = 𝑞3𝑟3 + 0 
On a alors 𝑟3 = 	𝑎 ∧ 𝑏 et l’égalité (N) : 

(N) 𝑢3𝑎 + 𝑣3𝑏 = 𝑟3, avec : 𝑢3 = 𝑢3$! − 𝑞3$%𝑢3$% et 𝑣3 = 𝑣3$! − 𝑞3$%𝑣3$%. 
 
Remarque II.13 : La démonstration peut paraître ardue, en raison des notations, mais le principe est très simple : il 
s’agit simplement de « remonter l’algorithme d’Euclide » à partir du dernier reste non nul, comme nous allons l’illustrer 
avec l’exemple ci-dessous. 

 
Exemple II.14 : Chercher une solution particulière de 2952	 × 	𝑢	 + 	516	 × 	𝑣	 = 	12. 
 
Solution : 

2952	 = 	516	 × 5	 + 	372 (1) 
516	 = 	372	 × 1	 + 	144		 (2) 
372	 = 	144	 × 	2	 + 	84 (3) 
144	 = 	84	 × 1	 + 	60 (4) 
84	 = 	60	 × 	1	 + 	24 (5) 
60	 = 	24	 × 	2	 + 	12 (6) 
24	 = 	12	 × 	2	 + 	0 STOP 

Donc, comme déjà vu, 2952 ∧ 516 = 12. De plus : 
12 = 	60	 − 	24	 × 2 12	est exprimé par	(6) 
 = 60 − (84 − 60 × 1) × 2 24	est exprimé par	(5) 
 = 	60	 × 3	 − 	84	 × 2 Réduction 
 =	 (144	 − 	84	 × 1) 	× 	3	 − 	84		 × 	2 60 est exprimé par (4) 
 = 	144	 × 3	 − 	84	 × 5 Réduction 
 = 	144	 × 3	 −	(372	 − 	144	 × 2) 	× 5 84 est exprimé par (3) 
 = 	144	 × 13	 − 	372	 × 5 Réduction 
 =	 (516	 − 	372	´	1) 	× 13	 − 	372	 × 	5 144 est exprimé par (2) 
 = 516	 × 	13	 − 	372	 × 18 Réduction 
 = 516	 × 13	 −	(2952	

− 	516	 × 5) 	× 18 
372 est exprimé par (1) 

 = 516	 × 103	 − 	2952	 × 18 Réduction 
Conclusion :12 = 2952 × 𝑢 + 516 × 𝑣 avec	𝑢 = 	−18	et	𝑣 = 103. 
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4. Propriétés de base 
 
Propriété II.15 : (homogénéité du PGCD)  
Soient 𝑎, 𝑏 et 𝑝 trois entiers. 
Alors (𝑝𝑎) ∧ (𝑝𝑏) = |𝑝|𝑎 ∧ b 
 
Démonstration : Si 𝑝 = 0,	le résultat est trivial. On suppose donc 𝑝 non nul. 

• 𝑎 ∧ b divise 𝑎 et 𝑏, donc |𝑝|𝑎 ∧ b divise 𝑝𝑎 et 𝑝𝑏. 
Donc |𝑝|𝑎 ∧ b divise (𝑝𝑎) ∧ (𝑝𝑏). 

• 𝑝 divise 𝑝𝑎 et 𝑝𝑏, donc 𝑝 divise (𝑝𝑎) ∧ (𝑝𝑏) 
Ainsi ("6)∧("9)|"|

 est entier. 

Comme (𝑝𝑎) ∧ (𝑝𝑏) divise 𝑝𝑎 et 𝑝𝑏, ("6)∧("9)|"|
 divise par conséquent 𝑎 et 𝑏,	donc aussi 𝑎 ∧ b. 

Donc (𝑝𝑎) ∧ (𝑝𝑏) divise |𝑝|𝑎 ∧ b. 
 
Comme (𝑝𝑎) ∧ (𝑝𝑏) et |𝑝|𝑎 ∧ b sont positifs, on en déduit que (𝑝𝑎) ∧ (𝑝𝑏) = |𝑝|𝑎 ∧ b. 
 
Propriété II.16 : (associativité du PGCD)  
Soient 𝑎, 𝑏 et 𝑐 trois entiers. 
Alors (𝑎 ∧ b) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ c). 
De plus, c’est l’unique nombre entier naturel, noté 𝑎 ∧ 𝑏 ∧ c, appelé PGCD de 𝑎, 𝑏 et 𝑐, tel que : 

1)	𝑎 ∧ 𝑏 ∧ c	divise	𝑎, 𝑏 et 	𝑐 
2) tout diviseur de 𝑎, 𝑏 et 	𝑐 divise	𝑎 ∧ 𝑏 ∧ c 

 
Démonstration : 

• (𝑎 ∧ b) ∧ 𝑐 divise 𝑎 ∧ b et 𝑐, donc divise 𝑎, 𝑏	et 𝑐, et donc divise a et 𝑏 ∧ c. 
Donc (𝑎 ∧ b) ∧ 𝑐 divise 𝑎 ∧ (𝑏 ∧ c). 
De même	𝑎 ∧ (𝑏 ∧ c)	divise (𝑎 ∧ b) ∧ 𝑐.	
Ces deux nombres étant des entiers naturels, on a donc (𝑎 ∧ b) ∧ 𝑐 = 𝑎 ∧ (𝑏 ∧ c). 

• Le point précédent a déjà établi que 𝑎 ∧ 𝑏 ∧ c	divise	𝑎, 𝑏 et 𝑐. 
• Soit maintenant 𝑑 un diviseur de 𝑎, 𝑏 et 𝑐. 

Alors il divise 𝑎 ∧ b et 𝑐, donc divise 𝑎 ∧ 𝑏 ∧ c. 
• Si 𝑑  et 𝑑′ sont deux PGCD de 𝑎, 𝑏 et 𝑐, alors comme 𝑑 divise 𝑎, 𝑏 et 𝑐, donc divise leur PGCD 𝑑′. 

De même, 𝑑’ divise 𝑑. 
Ces deux nombres étant des entiers naturels, on en déduit que 𝑑 = 𝑑′. 

 
Exemple II.17 :  
La propriété fournit la méthode pour déterminer le PGCD de trois nombres, par exemple avec l’égalité 𝑎 ∧ 𝑏 ∧ c = 
(𝑎 ∧ b) ∧ 𝑐. On a déjà vu que 2952 ∧ 516 = 12, donc 2952 ∧ 516 ∧ 8 = (2952 ∧ 516) ∧ 8 = 12 ∧ 8 = 4. 
 
Propriété II.18 : Soient 𝑎 et 𝑏 deux entiers.  
1) 𝑎 ∧ 𝑎 = 𝑎 
2) 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 
3) Soit 𝑘	un entier naturel non nul. Si 𝑘 divise 𝑎 et 𝑏, alors 6

'
∧ 9
'
= %

'
𝑎 ∧ 𝑏. 

4) Soit 𝑞 un entier relatif, alors 𝑎 ∧ 𝑏 = (𝑎 − 𝑏𝑞) ∧ 𝑏 
 

Démonstration : (dernier point uniquement, les trois autres sont laissées au lecteur) 
Soit 𝑑	 = 	𝑎 ∧ 𝑏 et 𝑑′	 = 	 (𝑎 − 𝑏𝑞) ∧ 𝑏 

§ 𝑑 divise 𝑎 et 𝑑 divise 𝑏 donc 𝑑 divise 𝑎	 − 	𝑏𝑞 (combinaison linéaire de 𝑎 et 𝑏) 
Donc 𝑑 est un diviseur commun à 𝑎	 − 	𝑏𝑞 et à 𝑏. 
Ainsi 𝑑 divise 𝑑′. 

§ 𝑑′ divise 𝑎	 − 	𝑏𝑞 et 𝑑′	divise 𝑏 donc 𝑑′	divise 𝑎	 − 	𝑏𝑞	 + 	𝑏𝑞	 = 	𝑎. 
Donc 𝑑# est un diviseur commun à 𝑎	et 𝑏. 
Ainsi 𝑑′	divise 𝑑. 
Comme 𝑑 et 𝑑′ sont positifs, 𝑑 = 𝑑′. 
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III. Nombres premiers entre eux 
 

1. Généralités 
 
Définition III.1 : 
Deux nombres entiers 𝑎 et 𝑏 sont dits premiers entre eux si et seulement si 𝑎 ∧ 𝑏 = 1 
 
Propriété III.4 : Soient 𝑎 et 𝑏 deux entiers. 
Si 𝑎 ∧ 𝑏 = 𝑑, alors les nombres 6

;
 et 9

;
 sont premiers entre eux. 

 
Démonstration : 
C’est quasiment immédiat : 6

;
∧ 9
;
= %

;
𝑎 ∧ 𝑏 = %

;
× 𝑑 = 1. 

 
2. Théorème de Bézout (1730-1783) 

 
Théorème III.5 : 
𝑎 ∧ 𝑏 = 1 ⇔	∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
  
Démonstration : 
⟹ Si 𝑎 ∧ 𝑏 = 1, on a déjà vu qu’il existe une égalité de Bézout en remontant l’algorithme d’Euclide, c’est-à-dire : 
∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
 
⟸ Si ∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1, notons 𝑑 = 𝑎 ∧ 𝑏. 
Alors 𝑑 divise 𝑎, donc divise 𝑎𝑢.  
De même, 𝑑 divise 𝑏, donc divise 𝑏𝑣. 
Ainsi, 𝑑 divise 𝑎𝑢 + 𝑏𝑣 = 1. 
Comme 𝑑 est positif, alors 𝑑 = 1. 
 
Corollaire III.6 : 
𝑎 est premier avec 𝑏 et avec 𝑐 si et seulement si 𝑎 est premier avec le produit 𝑏𝑐. 
 
Démonstration : 

• Supposons que 𝑎 ∧ 𝑏 = 1 et que 𝑎 ∧ 𝑐 = 1. 
Alors ∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
Et ∃(𝑤; 𝑥) ∈ ℤ! tels que 𝑎𝑤	 + 	𝑐𝑥	 = 	1 
Ainsi, en multipliant : (𝑎𝑢	 + 	𝑏𝑣)(	𝑎𝑤	 + 	𝑐𝑥) = 1 
On développe et on factorise ainsi : 𝑎(𝑎𝑢𝑤 + 𝑢𝑐𝑥 + 𝑏𝑣𝑤) + 𝑏𝑐(𝑣𝑥) = 1. 
Or  𝑎𝑢𝑤 + 𝑢𝑐𝑥 + 𝑏𝑣𝑤 et 𝑣𝑥 sont entiers, donc d’après le théorème de Bézout : 𝑎 est premier avec le produit 𝑏𝑐. 

• Réciproquement, si 𝑎 est premier avec le produit 𝑏𝑐, alors ∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑐𝑣	 = 	1 
En écrivant 𝑎𝑢	 + 	𝑏(𝑐𝑣) 	= 	1 et comme 𝑢 et 𝑐𝑣	sont entiers, 𝑎 et 𝑏 sont premiers entre eux d’après le théorème de 
Bézout. De même, en écrivant 𝑎𝑢	 + 	𝑐(𝑏𝑣) 	= 	1, on obtient que 𝑎 et 𝑐 sont premiers entre eux. 
 

3. Théorème de Gauss 
 
Théorème III.7 : 
Soit 𝑎, 𝑏 et 𝑐 trois entiers relatifs non nuls. 
Si 𝑎 divise 𝑏𝑐 et si 𝑎 et 𝑏 sont premiers entre eux, alors 𝑎 divise 𝑐. 
 
Démonstration 1 : 
𝑎 ∧ 𝑏 = 1 donc (𝑎𝑐) ∧ (𝑏𝑐) = |𝑐|𝑎 ∧ 𝑏 = |𝑐|. 
Or, 𝑎 divise 𝑎𝑐 et 𝑎 divise 𝑏𝑐, 𝑎 divise (𝑎𝑐) ∧ (𝑏𝑐) = |𝑐| 
Donc 𝑎 divise 𝑐. 
 
Démonstration 2 : 
𝑎 ∧ 𝑏 = 1	donc d’après le théorème de Bézout :	∃(𝑢; 𝑣) ∈ ℤ! tels que 𝑎𝑢	 + 	𝑏𝑣	 = 	1 
Donc 𝑎𝑢𝑐	 + 	𝑏𝑣𝑐	 = 	𝑐. 
Or 𝑎 divise 𝑏𝑐 donc divise 𝑏𝑣𝑐. 
Comme 𝑎 divise aussi 𝑎𝑢𝑐, alors a divise 𝑎𝑢𝑐	 + 	𝑏𝑣𝑐	 = 	𝑐. 
 
Corollaire III.8 : 
Soient 𝑎, 𝑏, 𝑐, 𝑑 quatre entiers non nuls, avec 𝑑	 ≥ 2. 
Si 𝑎𝑐	 ≡ 	𝑏𝑐	[𝑑] et si 𝑐 et 𝑑 sont premiers entre eux, alors 𝑎	 ≡ 𝑏	[𝑑]. 
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Démonstration : 
𝑎𝑐	 ≡ 𝑏𝑐	[𝑑] donc il existe 𝑘	 ∈ ℤ tel que (𝑎	 − 	𝑏)𝑐	 = 	𝑘𝑑. 
Or 𝑑 divise (𝑎	 − 	𝑏)𝑐 et 𝑑 est premier avec 𝑐 donc d’après le théorème de Gauss, 𝑑 divise 𝑎	 − 	𝑏. 
Autrement dit, 𝑎	 ≡ 𝑏	[𝑑]. 
 
  
Exercice III.9 : (lemme chinois) 
Soit 𝑝 et 𝑞 deux nombres premiers entre eux et soient	(𝑎; 𝑏) ∈ ℕ! tels que 0 ≤ 𝑎 < 𝑝 et  0 ≤ 𝑏 < 𝑞. 

1. Montrer qu’il existe 𝑛) ∈ ℤ tel que 7𝑛) ≡ 𝑎[𝑝]
𝑛) ≡ 𝑏[𝑞]. On pourra raisonner par analyse/synthèse. 

2. Exprimer en fonction de 𝑛) l’ensemble des solutions 𝑛 ∈ ℤ du système  7𝑛 ≡ 𝑎[𝑝]
𝑛 ≡ 𝑏[𝑞]. On pourra raisonner par 

analyse/synthèse. 

3. Déterminer l’ensemble des solutions entières du système 7𝑛 ≡ 9[17]
𝑛 ≡ 3[5]  

Solution : 
1. Analyse : supposons qu’il existe 𝑛) ∈ ℤ tel que 7𝑛) ≡ 𝑎[𝑝]

𝑛) ≡ 𝑏[𝑞]. 

Alors ∃𝑢) ∈ ℤ tel que 𝑛) = 𝑢)𝑝 + 𝑎 et ∃𝑣) ∈ ℤ tel que 𝑛) = 𝑣)𝑞 + 𝑏. 
Donc 𝑢)𝑝 − 𝑣)𝑞 = 𝑏 − 𝑎. 
Or, 𝑝 et 𝑞 sont premiers entre eux donc ∃(𝑢%; 𝑣%) ∈ ℤ! tels que 𝑝𝑢% 	+ 	𝑞𝑣% 	= 	1. 
Donc 𝑝𝑢%(𝑏 − 𝑎) + 	𝑞𝑣%(𝑏 − 𝑎) = 	𝑏 − 𝑎, c’est-à-dire 𝑢%(𝑏 − 𝑎)𝑝 + 𝑎 =	𝑣%(𝑎 − 𝑏)𝑞 + 𝑏. 
 
Synthèse : posons 𝑢) = 𝑢%(𝑏 − 𝑎), 𝑣) = 𝑣%(𝑎 − 𝑏) et 𝑛) = 𝑢)𝑝 + 𝑎.  
Ces trois nombres sont entiers et on a bien 𝑛) ≡ 𝑎[𝑝]. 
De plus : 
 𝑣)𝑞 + 𝑏 =	𝑣%(𝑎 − 𝑏)𝑞 + 𝑏 = 𝑣%𝑞(𝑎 − 𝑏) + 𝑏 = (1 − 𝑝𝑢%)(𝑎 − 𝑏) + 𝑏 = 𝑎 − 𝑏 + 𝑝𝑢%(𝑏 − 𝑎) + 𝑏 = 𝑢)𝑝 + 𝑎 = 𝑛). 
 
Donc 𝑛) ≡ 𝑏[𝑞]. 
 

2. Analyse : soit	𝑛 ∈ ℤ une solution du système  7𝑛 ≡ 𝑎[𝑝]
𝑛 ≡ 𝑏[𝑞]. 

 
Alors ∃(𝑢; 𝑣) ∈ ℤ! tel que 𝑛 = 𝑢𝑝 + 𝑎 = 𝑣𝑞 + 𝑏 . 
Or 𝑛) = 𝑢)𝑝 + 𝑎 = 𝑣)𝑞 + 𝑏 donc 𝑛 − 𝑛) = (𝑢 − 𝑢))𝑝 = (𝑣 − 𝑣))𝑞. 
Donc 𝑝 divise (𝑣 − 𝑣))𝑞 et comme 𝑝 et 𝑞 sont premiers entre eux, alors 𝑝 divise 𝑣 − 𝑣) d’après le théorème de 
Gauss. 
Ainsi, il existe 𝑘 ∈ ℤ tel que 𝑣 − 𝑣) = 𝑘𝑝 donc (𝑢 − 𝑢))𝑝 = 𝑘𝑝𝑞 d’où 𝑢 − 𝑢) = 𝑘𝑞 
On obtient donc 𝑛 − 𝑛) = 𝑘𝑝𝑞, ou encore 𝑛 = 𝑛) + 𝑘𝑞𝑝. 
 

Synthèse : réciproquement, s’il existe 𝑘 ∈ ℤ tel que 𝑛 = 𝑛) + 𝑘𝑞𝑝, alors 7𝑛 ≡ 𝑛)[𝑝] ≡ 𝑎[𝑝]
𝑛 ≡ 𝑛)[𝑞] ≡ 𝑏[𝑞]. 

 
3. On applique la méthode utilisée pour les questions précédentes en cherchant une solution particulière 𝑛)	du 

système. 
On vérifie d’abord que 17 et 5 sont premiers entre eux (ici, c’est trivial car 17 et 5 sont deux nombres premiers 
distincts) puis on cherche (𝑢%; 𝑣%) ∈ ℤ! tels que 17𝑢% 	+ 	5𝑣% 	= 	1. Pour cela, on applique l’algorithme 
d’Euclide : 

17	 = 	5	 × 3	 + 	2 (1) 
5	 = 	2	 × 2	 + 	1		 (2) 
2	 = 	2	 × 	1	 + 	0 STOP 

 
On le remonte pour trouver l’égalité de Bézout : 

1 = 	5	 − 	2	 × 2 1	est exprimé par	(2) 
 = 5 − (17 − 5 × 3) × 2 24	est exprimé par	(1) 
 = 	17	 × (−2) + 5	 × 7 Réduction 

 
  Posons alors 𝑛) = 𝑣)𝑞 + 𝑏 = 𝑣%(𝑎 − 𝑏)𝑞 + 𝑏 = 7 × (9 − 3) × 5 + 3 = 213. 
 

  On a bien :  7213 = 12 × 17 + 9 ≡ 9[17]
213 = 42 × 5 + 3 ≡ 3[5] . 

   
  De plus, 𝑛 ∈ ℤ vérifie le système si et seulement s’il existe 𝑘 ∈ ℤ tel que 𝑛 = 𝑛) + 𝑘𝑞𝑝 = 213 + 85𝑘. 
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Exercice III.10 (Théorème de Wilson) 
L’objectif de cet exercice est de démontrer le théorème de Wilson : 
Soit 𝑝 un entier naturel strictement supérieur à 1. Alors :  

𝑝 ∈ ℙ⇔ (𝑝	 − 	1)! 	≡ −1	[𝑝] 
 

1. Prouver le sens indirect. 
2. Pour le sens direct : 

a. Vérifier que la propriété est vraie pour 𝑝	 = 	2 et 𝑝	 = 	3. 
b. Soit 𝑝 un nombre premier supérieur ou égal à 5 et soit 𝑞 un entier naturel compris entre 2 et 𝑝	 − 2. 

Justifier qu’il existe des entiers a et b tels que a𝑞	 + 	b𝑝	 = 	1. 
c. Soit 𝑟 le reste de la division de a par 𝑝. 

i. Montrer que 𝑟𝑞	 ≡ 1	[𝑝]. 
ii. Vérifier que 2	 ≤ 𝑟	 ≤ 	𝑝	 − 2. 
iii. Montrer qu’à chaque entier 𝑞 compris 2 et (𝑝	 − 2), on peut associer de manière unique un entier 

𝑟 compris entre 2 et (𝑝	 − 2) tel que 𝑟𝑞	 ≡ 	1	[𝑝]. On pourra raisonner par l’absurde. 
d. Conclure. 

 
Solution : 

1. Si (𝑝	 − 1)	! 	≡ −1	[𝑝] alors ∃	𝑘	 ∈ 	ℤ	tel que (𝑝	 − 1)! 	+ 	1	 = 	𝑘𝑝 donc 𝑘𝑝 − (𝑝	 − 1)	! 			= 	1 
D’après le théorème de Bézout, (𝑝	 − 1)!	et 𝑝 sont premiers entre eux. 
Ainsi 𝑝 est premier avec tous les entiers naturels non nuls qui lui sont inférieurs. 
Donc 𝑝 est premier. 
 

2. Soit 𝑝 un nombre premier. 
a. Si 𝑝	 = 	2 ou 𝑝	 = 	3, le résultat est trivial. 
b. Soit 𝑝 un nombre premier supérieur ou égal à 5 et soit 𝑞 un entier naturel compris entre 2 et 𝑝	 − 2. 

𝑝 est premier donc 𝑝 et 𝑞 sont premiers entre eux. 
D’après le théorème de Bézout, il existe a et b entiers relatifs tels que a𝑞	 + 	b	𝑝	 = 	1. 

c. Soit 𝑟 le reste de la division de a par 𝑝. 
i. a𝑞	 + 	b	𝑝	 = 	1 ⟹ a𝑞 ≡ 1[𝑝]⟹ 𝑟𝑞 ≡ 1[𝑝] 
ii. 𝑟 le reste de la division de a par 𝑝, donc 0	 ≤ 	𝑟	 ≤ 	𝑝	 − 	1 . 

• Si 𝑟 = 0,	alors 𝑟𝑞 ≡ 1[𝑝] ⟹ 0 ≡ 1[𝑝], impossible. 
• Si 𝑟 = 1,	alors 𝑟𝑞 ≡ 1[𝑝] ⟹ 𝑞 ≡ 1[𝑝], donc 𝑝 divise 𝑞 − 1 ≤ 𝑝 − 3, impossible. 
• Si 𝑟 = 𝑝 − 1, alors (𝑝 − 1)𝑞 ≡ 1[𝑝] ⟹ −𝑞 ≡ 1[𝑝], donc 𝑝 divise 𝑞 + 1 ≤ 𝑝 − 1, impossible. 

Donc 2	 ≤ 	𝑟	 ≤ 	𝑝	 − 	2. 
iii. Soit 𝑞	et	𝑞’ deux entiers distincts compris 2 et (𝑝	 − 2). 

Raisonnons par l’absurde en supposant qu’il existe un entier 𝑟 tel que 2 ≤ 𝑟 ≤ 𝑝 − 2 et 7
𝑟𝑞 ≡ 1	[𝑝]	
𝑟𝑞’ ≡ 1	[𝑝] . 

Alors  𝑟(𝑞	 − 	𝑞’) ≡ 0	[𝑝]. 
Or −𝑝	 + 	2	 < 	𝑞	 − 	𝑞’	 < 	𝑝	 − 	2 et 𝑝 ∈ ℙ donc 𝑝	et (𝑞	 − 	𝑞’) sont premiers entre eux. 
D’après le théorème de Gauss, 𝑝 divise 𝑟, absurde. 
 
Donc, à chaque entier 𝑞 compris 2	et (𝑝	 − 	2), on peut associer de manière unique un entier 𝑟 compris entre 2 et (𝑝	 −
2) tel que 𝑟𝑞	 ≡ 	1	[𝑝]. 
 

d. Les entiers de 2 à 𝑝	 − 	2 peuvent être regroupés en couples de produit congru à 1 modulo 𝑝 (un nombre 
ne peut être associé à lui-même). 

Ainsi (𝑝	 − 	1)	! 	= (𝑝 − 2)! × (𝑝 − 1) ≡ 1 × (𝑝 − 1)	[𝑝] ≡ −1	[𝑝]. 


