Chapitre 2 : A1 : divisibilité et nombres premiers

1 Divisibilité dans \mathbb{Z}

Soient a, b et c trois entiers relatifs non nuls.

Définition 1.

Dire que \underline{b} divise \underline{a} signifie qu'il existe un entier relatif k tel que $\underline{a} = bk$.

On note: b|a.

On dit aussi que b est un diviseur de a ou que a est un multiple de b.

Exercice 1. .

- 1) Montrer que -8 est un diviseur de 24.
- 2) Montrer que 24 est un multiple de 8.
- 3) Soit $n \in \mathbb{Z}$, montrer que n-1 est un diviseur de n^2-1 .
- 4) Montrer que 1 et -1 divisent tous les entiers relatifs.
- 5) Montrer que tout entier relatif divise 0.

Proposition 1. .

Les seuls diviseurs de 1 et -1 sont 1 et -1.

Proposition 2. .

- 1) Transitivité : Si c|b et b|a alors c|a.
- 2) Si a|b et b|a alors |a| = |b|.
- 3) Si c divise a et b alors, pour tout entier u et v, c divise au + bv.

Exercice 2. .

Démontrer chacun des points de la propriété précédente :

- 1) Transitivité : Si c|b et b|a alors c|a.
- 2) Si a|b et b|a alors |a| = |b|.
- 3) Si c divise a et b alors, pour tout entier u et v, c divise au + bv.

Définition 2.

On dit que qu'une fraction $\frac{a}{b}$ est irréductible si les seuls diviseurs communs à a et à b sont 1 et -1.

2 Nombres premiers

Définition 3. .

Un entier est dit premier lorsqu'il admet exactement deux diviseurs dans $\mathbb N:1$ et lui-même.

Proposition 3. .

Soit n un entier supérieur ou égal à 2.

n est premier si, et seulement si, n n'a pas de diviseur premier inférieur ou égal à \sqrt{n} autre que 1.

Exercice 3. .

Soit n un entier supérieur ou égal à 2.

- 1) On suppose que n est premier. Justifier que 1 est le seul diviseur de n inférieur ou égal à \sqrt{n} . En déduire que n n'a pas de diviseur premier inférieur ou égal à \sqrt{n} .
- 2) Réciproquement, supposons que n n'a pas de diviseur premier inférieur ou égal à \sqrt{n} et montrons, en raisonnant par l'absurde, que n est premier : on suppose donc que n n'est pas premier. L'ensemble des diviseurs de n (dans $\mathbb N$) autres que 1 et n étant non vide, il admet un plus petit élément
 - (a) Justifier que m est premier.
 - (b) Justifier qu'il existe un entier k tel que $1 < m \le k < n$ et n = mk.
 - (c) En déduire que $m^2 \leq n$.
- 3) Conclure.