Les formes d'un nombre complexe

Rappels du résumé de cours.

Forme algébrique de z (rappel)

C'est la forme z = a + bi.

Module et argument de z (rappel)

- Le *module* de z est le nombre réel $|z| = \sqrt{a^2 + b^2}$. • |z| = OM.
 - Un argument de z non nul est une mesure de l'angle (u, OM).
 - Si on pose arg $z = \theta$,

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}$$
 et $\sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$.

Forme trigonométrique (rappel)

- Si |z| = r et arg $z = \theta$, la **forme trigonométrique** de z est : $z = r(\cos \theta + i \sin \theta)$.
- Dans ce cas, on note aussi parfois $z = [r, \theta]$.

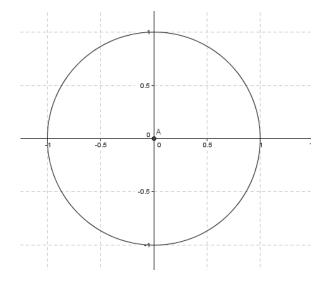
Forme (ou écriture exponentielle)

Si |z| = r et arg $z = \theta$, la **formule (ou écriture) exponentielle** de z est : $z = re^{i\theta}$.

Exercice préliminaire :

Etablir le tableau des valeurs remarquables :

Angle θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos \theta$	1		$\frac{\sqrt{2}}{2}$		
Sin θ	0				



Exercices du livre page 287

Passage de la forme algébrique à la forme trigonométrique.

Déterminer le module et un argument des nombres complexes suivants. (On demande des valeurs exactes.) En déduire la forme trigonométrique de z.

a)
$$z = 1 - i$$
;

b)
$$z = 2 + 2i$$
;

c)
$$z = -1 + i\sqrt{3}$$
;

d)
$$z = -2i$$
;

e)
$$z = -3$$
;

f)
$$z = -\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}$$
.

Contrôler sur une figure les résultats obtenus.

CORRIGÉ P. 419

31. + Déterminer le module et un argument

Déterminer le module et un argument des nombres complexes suivants. (On demande des valeurs exactes.)

a)
$$z = 1 + i$$
;

b)
$$z = -5i$$
;

c)
$$z = -1$$
;

d)
$$z = 1 + i\sqrt{3}$$
;

e)
$$z = \sqrt{3} + i$$
;

$$f) z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4}.$$

Contrôler sur une figure les résultats obtenus.

32 • + Passage de la forme algébrique

à la forme trigonométrique (suite)

Déterminer la valeur exacte du module et d'un argument du nombre complexe z. En déduire la forme trigonométrique de z.

a)
$$z = -1 + i$$
;

b)
$$z = 2 - 2i$$
;

c)
$$z = \sqrt{3} - i$$
;

d)
$$z = -7i$$
;

e)
$$z = \sqrt{3}$$

f)
$$z = 2$$
.

33. ++ Même question qu'à l'exercice 32

a)
$$z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
;

a)
$$z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
; b) $z = -2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$.

Passage de la forme trigonométrique à la forme algébrique.

a)
$$\rho = 3$$
 et $\theta = \frac{\pi}{6}$;

a)
$$\rho = 3$$
 et $\theta = \frac{\pi}{6}$; **b)** $\rho = 2$ et $\theta = \frac{\pi}{4}$;

c)
$$\rho = \frac{1}{2} \text{ et } \theta = -\frac{\pi}{3}$$
; d) $\rho = 1 \text{ et } \theta = \frac{4}{5\pi}$.

d)
$$\rho = 1$$
 et $\theta = \frac{5\pi}{4}$

35. + Passage de la forme trigonométrique à la forme algébrique

Soit z un nombre complexe de module ρ et d'argument θ . Écrire z sous la forme algébrique a + bi dans les cas sui-

a)
$$\rho = 3$$
 et $\theta = \frac{\pi}{3}$

b)
$$\rho = 2$$
 et $\theta = -\frac{\pi}{6}$

a)
$$\rho = 3$$
 et $\theta = \frac{\pi}{3}$;
b) $\rho = 2$ et $\theta = -\frac{\pi}{6}$;
c) $\rho = 1$ et $\theta = \frac{7\pi}{3}$;
d) $\rho = 4$ et $\theta = \frac{3\pi}{4}$.

d)
$$\rho = 4$$
 et $\theta = \frac{3\pi}{4}$

Forme exponentielle.

36. + Utiliser l'écriture exponentielle

Mettre sous forme algébrique les nombres complexes sui-

$$z_1=\mathrm{e}^{\mathrm{i}\frac{\pi}{4}}\;;\quad z_2=\mathrm{e}^{\mathrm{2}\frac{\mathrm{i}\pi}{3}}\;;\quad z_3=\mathrm{e}^{-\mathrm{i}\frac{\pi}{6}}\;;\quad z_4=\mathrm{e}^{-\mathrm{i}\frac{\pi}{2}}\;;$$

$$z_5 = e^{i\frac{\pi}{6}} + e^{-i\frac{\pi}{6}}; \quad z_6 = 2e^{i\frac{\pi}{3}} + \sqrt{2}e^{-i\frac{\pi}{4}}$$

37. + Passer de l'écriture exponentielle à la forme

Mettre sous forme algébrique chacun des nombres complexes suivants :

$$\begin{split} z_1 &= \mathrm{e}^{\mathrm{i}\pi}\;; \quad z_2 = \mathrm{e}^{-\mathrm{i}\frac{\pi}{3}}\;; \quad z_3 = 25\mathrm{e}^{\mathrm{i}\frac{\pi}{4}}\;; \quad z_4 = \mathrm{e}^{\mathrm{i}\frac{5\pi}{6}}\;; \\ z_5 &= 10\mathrm{e}^{\mathrm{i}\frac{\pi}{6}}\!\times\!0, 5\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}\;; \quad z_6 = \mathrm{e}^{\mathrm{i}\frac{\pi}{2}} + \mathrm{e}^{\mathrm{i}\frac{3\pi}{2}}\;. \end{split}$$

38. + Passer de la forme algébrique à une forme exponentielle

Donner une forme exponentielle des nombres complexes suivants :

$$z_1 = 1$$
; $z_2 = 2i$; $z_3 = -3i$; $z_4 = -2$;
 $z_5 = 1 - i$; $z_6 = 1 + i\sqrt{3}$; $z_7 = 3 - 2i$.

Pour z_7 on donnera des valeurs approchées arrondies à 10^{-2} du module et d'un argument.

CORRIGÉ P. 420

39. + Passer de la forme algébrique à l'écriture exponentielle (bis)

Pour chacun des nombres complexes suivants, déterminer le module et un argument, puis en déduire une notation exponentielle.

$$z_1 = \sqrt{3} + i$$
; $z_2 = 1 - i$; $z_3 = 1 - i\sqrt{3}$;

$$z_4 = \sqrt{3} + 3i$$
; $z_5 = \frac{-1 - i\sqrt{3}}{2}$.

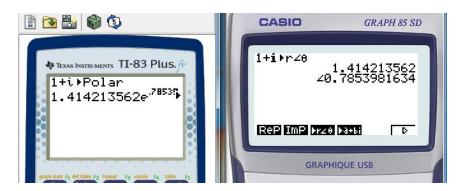
Les calculatrices et MAXIMA possèdent des fonctions qui permettent de passer d'une écriture à l'autre.

La forme exponentielle s'appelle forme polaire (polar form)

La forme algébrique s'appelle forme rectangulaire (rectangular form)

- Sur CASIO, on accède au menu CPLX par la touche OPTN
- Sur TI, on accède au menu CPX par la touche MATH.
- Dans MAXIMA, on accède aux calculs sur les complexes dans le menu SIMPLIFIER.

```
(%i3) polarform(%);
%i %pi
```



Solutions de quelques exercices

31.

a)
$$|z| = \sqrt{2}$$
; arg $z = \frac{\pi}{4}$.

b)
$$|z| = 5$$
; arg $z = -\frac{\pi}{2}$.

c)
$$|z| = 1$$
; arg $z = \pi$.

d)
$$|z| = 2$$
; $\arg z = \frac{\pi}{3}$.

e)
$$|z| = 2$$
; arg $z = \frac{\pi}{6}$

f)
$$|z| = 1$$
; $\arg z = \frac{\pi}{4}$.

32.

a)
$$\sqrt{2}$$
; $\frac{3\pi}{4}$

a)
$$\sqrt{2}$$
 ; $\frac{3\pi}{4}$. b) $2\sqrt{2}$; $-\frac{\pi}{4}$.

c) 2;
$$-\frac{\pi}{6}$$
. d) 7; $-\frac{\pi}{2}$.

d) 7;
$$-\frac{\pi}{2}$$

e) 4;
$$\pi$$
.

33.

a)
$$|z| = 2$$
; arg $z = \frac{\pi}{3}$.

b)
$$z = 2\left(-\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$$
;

$$z = 2\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right);$$

$$|z|=2$$
; arg $z=\frac{4\pi}{3}$.

35.

a)
$$z = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$$
.

b)
$$z = \sqrt{3} - i$$
.

c)
$$z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$
.

d) $z = -2\sqrt{2} + 2\sqrt{2}i$.

37.

$$z_{1} = \cos \pi + i \sin \pi = -1.$$

$$z_2 = \cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$
.

$$z_3 = 25\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = \frac{25\sqrt{2}}{2} + \frac{25\sqrt{2}}{2}i.$$

$$Z_4 = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i.$$

$$Z_5 = 5e^{i\frac{\pi}{6} + i\frac{\pi}{3}} = 5e^{i\frac{\pi}{2}} = 5\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 5i.$$

$$Z_6 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} + \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = i - i = 0.$$

39.

$$|z_1| = 2$$
; arg $z_1 = \frac{\pi}{6}$; $z_1 = 2e^{i\frac{\pi}{6}}$.

$$|z_2| = \sqrt{2}$$
; arg $z_2 = \frac{\pi}{4}$; $z_2 = \sqrt{2}e^{i\frac{\pi}{4}}$.

$$|z_3| = 2$$
; arg $z_3 = -\frac{\pi}{3}$; $z_3 = 2e^{-i\frac{\pi}{3}}$.

$$|z_4| = \sqrt{12} = 2\sqrt{3}$$
; $\arg z_4 = \frac{\pi}{3}$; $z_4 = 2\sqrt{3} e^{i\frac{\pi}{3}}$.

$$|z_5| = 1$$
; arg $z_5 = \frac{4\pi}{3}$; $z_5 = e^{i\frac{4\Pi}{3}}$.