
I. Généralités sur les fonctions  

Une fonction 𝑓 décrit une relation entre un ensemble de départ et un ensemble d’arrivée, que l’on 

note ainsi : 

𝑓 ∶   𝐼 ⟶ 𝐽 

              𝑥 ↦ 𝑓(𝑥) 

Dans la plupart des exemples rencontrés au lycée, on dispose de formules arithmétiques simples 

permettant de calculer l’image d’un nombre. Par exemple : 

𝑓 ∶   ℝ ⟶ ℝ 

                              𝑥 ↦ 3𝑥2 + 4𝑥 − 1 

Il peut aussi arriver que l’on ne dispose pas de formule simple pour décrire l’image d’un réel par une 

fonction. On se contentera alors de noter cette image 𝑓(𝑥). 

La notion clé à retenir pour une fonction est l’unicité de l’image : A tout nombre de l’ensemble de 

départ 𝐼, on associe un unique nombre de l’ensemble d’arrivée 𝐽 

En revanche, un nombre peut avoir plusieurs antécédents : un élément de l’ensemble d’arrivée 𝐽 

peut être l’image de plusieurs éléments de l’ensemble de départ 𝐼. Prenons l’exemple de la fonction 

𝑓(𝑥) = 𝑥².On sait que 4 est l’image de 2 et de −2. 

De plus, il n’est pas non plus nécessaire que chaque élément de l’ensemble d’arrivée 𝐽 soit l’image 

d’un élément de l’ensemble de départ. Si on reprend notre exemple de référence avec la fonction 

carré, on peut la décrire comme une fonction de ℝ dans ℝ. Tous les réels ont bien une unique image 

par cette fonction. En revanche, les réels négatifs, ne sont l’image d’aucun réel par cette fonction. 

Définition :  

 

 

Définition :  

 

 

Exemples : La fonction 𝑓 ∶  ℝ ⟶ ℝ définie par 𝑓(𝑥) = 𝑥² est-elle injective ? 

La fonction 𝑓 ∶  ℝ∗ ⟶ ℝ∗ définie par 𝑓(𝑥) =
1

𝑥
  est-elle injective ? 

Solution : 𝑓(𝑥) = 𝑥² :N’est pas injective car 𝑓(−2) = 𝑓(2) alors que −2 ≠ 2 

𝑓(𝑥) =
1

𝑥
 Oui car si 𝑥 et 𝑦 sont deux réels non nuls tel que 𝑓(𝑥) = 𝑓(𝑦) On a donc 

1

𝑥
=

1

𝑦
 ⟺ 𝑥 = 𝑦  

 

 Définition :  

 

Exemples : La fonction 𝑓 ∶  ℝ ⟶ ℝ définie par 𝑓(𝑥) = 𝑥² est-elle surjective ? 

La fonction 𝑓 ∶  ℝ ⟶ ℝ+ définie par 𝑓(𝑥) = 𝑥² est-elle surjective ? 

La fonction 𝑓 ∶  ℝ∗ ⟶ ℝ∗ définie par 𝑓(𝑥) =
1

𝑥
  est-elle surjective ? 

Une fonction 𝑓 ∶ 𝑋 ⟶ 𝑌 est dite injective si tout réel 𝑦 ∈ 𝑌 admet au plus un antécédent dans 

𝑋. Dans la pratique cela signifie que si 𝑓(𝑎) = 𝑓(𝑏) alors 𝑎 = 𝑏. 

 

Une fonction 𝑓 ∶ 𝑋 ⟶ 𝑌 est dite surjective si tout réel 𝑦 ∈ 𝑌 admet au moins un 

antécédent dans 𝑋.  

 

La fonction identité notée id est la fonction définie par : 𝑖𝑑 ∶  ℝ ⟶ ℝ  

                                                                  𝑥 ↦ 𝑥 



 

Solution : Non car si 𝑦 ∈ ℝ et 𝑦 < 0 il n’existe pas de réels 𝑥 tels que 𝑦 = 𝑥² 

Oui car ici l’ensemble d’arrivé est ℝ+ donc si 𝑦 ∈ ℝ+ on a 𝑦 = 𝑥² pour 𝑥 = √𝑦 ou 𝑥 = −√𝑦 

Oui car si 𝑦 ∈ ℝ∗ on a 𝑦 = 𝑓(𝑥) pour 𝑥 =
1

𝑦
  et 𝑥 ∈ ℝ∗  

 

Définition :  

 

 

Exemples : La fonction 𝑓 ∶  ℝ ⟶ ℝ+ définie par 𝑓(𝑥) = 𝑥² est-elle bijective ? 

Non car elle n’est pas injective. 

 

Définition :  

 

 

Exemple : Si on considère la fonction 𝑓 ∶  ℝ+ ⟶ ℝ+ définie par 𝑓(𝑥) = 𝑥². Expliquez pourquoi cette 

fonction admet une réciproque et expliciter 𝑓−1. 

Vu comme fonction définie sur ℝ+ cette fonction est injective. Pour tout réel 𝑦 > 0 il existe un 

unique 𝑥 > 0 tel que 𝑦 = 𝑥² il faut prendre 𝑥 = √𝑦 et donc  

𝑓−1: ℝ+ ⟶ ℝ+ 

𝑥 ↦ √𝑥 

 

Définition : 

 

 

 

 

 

 

En résumé, une fonction croissante conserve l’ordre et une fonction décroissante inverse l’ordre. 

Exercice 1 : Soit 𝑓 ∶ 𝑋 → ℝ strcitement monotone sur X. Prouvez que 𝑓 est injective sur X. 

Solution : Supposons 𝑓 strictement croissante. Soient 𝑎 et 𝑏 deux réels distincts de 𝑋, avec 𝑎 < 𝑏. 𝑓 

étant strictement croissante : 𝑓(𝑎) < 𝑓(𝑏). Autrement dit, si 𝑎 ≠ 𝑏 alors 𝑓(𝑎) ≠ 𝑓(𝑏). 

Si on suppose 𝑓 strtrictement décroissante, un raisonnement analogue permet également de 

montrer 𝑞𝑢𝑒 si 𝑎 ≠ 𝑏 alors 𝑓(𝑎) ≠ 𝑓(𝑏). On a prouvé dans les 2 cas que 𝑓 est injective. 

Une fonction 𝑓:  𝑋 ⟶ 𝑌 est dite bijective si elle est surjective et injective. C’est-à-dire que 

pour tout réel 𝑦 ∈ 𝑌, il existe un unique 𝑥 ∈ 𝑋 tel que 𝑦 = 𝑓(𝑥). Tout réel de l’ensemble 𝑌 

admet un unique antécédent dans 𝑋. 

On considère une fonction 𝑓 : 𝑋 ⟶ 𝑌 bijective. On définit alors la fonction réciproque de 𝑓 

notée 𝑓−1 avec 𝑓−1: 𝑌 → 𝑋 qui a tout réel 𝑦 ∈ 𝑌 associe l’unique élément 𝑥 ∈ 𝑋 vérifiant 𝑦 =

𝑓(𝑥) (𝑥 est l’unique antécédent de 𝑦 patr 𝑓). On a donc 𝑓−1(𝑦) = 𝑥. 

Soit 𝑓 ∶ 𝑋 → 𝑌 une fonction et 𝐼 une partie de X. 

La fonction 𝑓 est dite croissante (respectivement strictement croissante) si pour tous réels 

𝑎 et  𝑏 de I, si 𝑎 ≤ 𝑏 (resp. 𝑎 < 𝑏) alors 𝑓(𝑎) ≤ 𝑓(𝑏) (resp. 𝑓(𝑎) < 𝑓(𝑏)). 

La fonction 𝑓 est dite décroissante (respectivement strictement décroissante) si pour tous 

réels 𝑎 et  𝑏 de I, si 𝑎 ≥ 𝑏 (resp. 𝑎 > 𝑏) alors 𝑓(𝑎) ≥ 𝑓(𝑏) (resp. 𝑓(𝑎) > 𝑓(𝑏)). 

La fonction 𝑓 est dite monotone sur 𝐼 si elle est croissante sur I ou décroissante sur I. 

On définit de la même manière la stricte monotonie sur I. 

 



Exercice 2 : Prouver que si 𝑓 ∶ 𝑋 → 𝑌 est une bijection strictement croissante. Alors 𝑓−1: 𝑌 → 𝑋 est 

également strictement croissante. 

Solution : Soient 𝑎, 𝑏 ∈ 𝑌 tels que 𝑎 < 𝑏. 𝑓 étant bijective, il existe deux uniques réels 𝑥 et 𝑦 de 𝑋 

tels que 𝑎 = 𝑓(𝑥) et 𝑏 = 𝑓(𝑦). 

Comme 𝑎 < 𝑏 on a donc 𝑓(𝑥) < 𝑓(𝑦) et 𝑓 étant croissante strictement cela implique que 𝑥 < 𝑦. 

Enfin, 𝑓 étant bijective et 𝑓−1 est sa réciproque : 𝑎 = 𝑓(𝑥) singifie que 𝑓−1(𝑎) = 𝑥. De même 

𝑓−1(𝑏) = 𝑦. Ainsi, 𝑥 < 𝑦 signifie que 𝑓−1(𝑎) < 𝑓−1(𝑏) : 𝑓−1 est strcitement croissante. 

 

Notation :  

 

 

 

 

Exemple : On considère 𝑓(𝑥) = 𝑥2 − 2 et 𝑔(𝑥) = 3𝑥 + 1. Après avoir donner l’ensemble de 

définition de 𝑓 ∘ 𝑔  expliciter 𝑓 ∘ 𝑔(𝑥). Même question avec 𝑔 ∘ 𝑓   

𝑓 et 𝑔 sont définies sur ℝ donc 𝑓 ∘ 𝑔  est définie sur ℝ et  

∀𝑥 ∈ ℝ, 𝑓 ∘ 𝑔 (𝑥) = 𝑓(𝑔(𝑥)) = 𝑓(3𝑥 + 1) = (3𝑥 + 1)2 − 2  

𝑓 ∘ 𝑔(𝑥) = 9𝑥2 + 6𝑥 − 1 

De même, 𝑔 ∘ 𝑓  est définie sur ℝ et  

∀𝑥 ∈ ℝ, 𝑔 ∘ 𝑓 (𝑥) = 𝑔(𝑓(𝑥)) = 𝑔(𝑥2 − 2) = 3(𝑥2 − 2) + 1  

𝑔 ∘ 𝑓(𝑥) = 3𝑥2 − 5 

On constate avec cet exemple que 𝑓 ∘ 𝑔 ≠ 𝑔 ∘ 𝑓 : ce qui est le cas en général.La composition n’est 

pas commutative en général. 

Exemple : Soit 𝑓: ℝ → ℝ une fonction bijective. Déterminer 𝑓−1 ∘ 𝑓 puis 𝑓 ∘ 𝑓−1 

Soit 𝑥 ∈ ℝ, comme 𝑓 est bijective sur ℝ, il existe 𝑦 ∈ ℝ tel que 𝑦 = 𝑓(𝑥) et donc 𝑥 = 𝑓−1(𝑦) 

𝑓−1 ∘ 𝑓(𝑥) = 𝑓−1(𝑓(𝑥)) = 𝑓−1(𝑦) = 𝑥 

Ainsi la fonction 𝑓−1  ∘ 𝑓 est la fonction      𝑖𝑑 ∶  ℝ ⟶ ℝ  

  𝑥 ↦ 𝑥 

On démontre de même que 𝑓 ∘ 𝑓1 = 𝑖𝑑 

 

Théorème : 

 

 

 

Preuve : Soient 𝑥 et 𝑦 deux réels de l’ensemble 𝐼 

Soit 𝑓 ∶ 𝑋 → 𝑌  et 𝑔 ∶ 𝐼 → 𝐽 deux fonctions vérifiant pour tout 𝑥 ∈ 𝐼 : 𝑔(𝑥) ∈ 𝑋. 

La fonction composée de 𝑔 par 𝑓 est notée 𝑓 ∘ 𝑔 se lit « 𝑓 𝑟𝑜𝑛𝑑 𝑔 » est définie pour tout 𝑥 ∈ 𝐼 

par : 

(𝑓 ∘ 𝑔)(𝑥) = 𝑓((𝑔(𝑥)) 

Il s’agit de la composée de 𝑔 suivie de 𝑓 : il faut d’abord calculer 𝑔(𝑥) puis l’image de 𝑔(𝑥) par la 

fonction 𝑓. 

 

Soit 𝑓 ∶ 𝑋 → 𝑌  et 𝑔 ∶ 𝐼 → 𝐽 deux fonctions vérifiant pour tout 𝑥 ∈ 𝐼 : 𝑔(𝑥) ∈ 𝑋. 

• Si 𝑓 et 𝑔 sont croissantes alors 𝑓 ∘ 𝑔 est croissante. 

• Si 𝑓 et 𝑔 sont décroissantes alors 𝑓 ∘ 𝑔 est croissante. 

• Si 𝑓 est décroissante et 𝑔 croissante alors 𝑓 ∘ 𝑔 est décroissante 

• Si 𝑓 est croissante et 𝑔 décroissante alors 𝑓 ∘ 𝑔 est décroissante 

•  

•  

 



Supposons 𝑥 < 𝑦 

• Si 𝑓 et 𝑔 sont croissantes : Comme 𝑔 est croissante, on a donc : 𝑔(𝑥) < 𝑔(𝑦) et 𝑓 étant 

croissante : 𝑓(𝑔(𝑥)) < 𝑓(𝑔(𝑦)): 𝑓 ∘ 𝑔 est croissante  

• Si 𝑓 et 𝑔 sont décroissantes : Comme 𝑔 est décroissante, on a donc : 𝑔(𝑥) > 𝑔(𝑦) et 𝑓 étant 

décroissante : 𝑓(𝑔(𝑥)) < 𝑓(𝑔(𝑦)): 𝑓 ∘ 𝑔 est croissante  

• Si 𝑓 est décroissante et 𝑔 croissante : Comme 𝑔 est croissante, on a donc : 𝑔(𝑥) < 𝑔(𝑦) et 𝑓 

étant décroissante : 𝑓(𝑔(𝑥)) > 𝑓(𝑔(𝑦)): 𝑓 ∘ 𝑔 est décroissante  

• Si 𝑓 est croissante et 𝑔 décroissante : Comme 𝑔 est décroissante, on a donc : 𝑔(𝑥) > 𝑔(𝑦) 

et 𝑓 étant croissante : 𝑓(𝑔(𝑥)) > 𝑓(𝑔(𝑦)): 𝑓 ∘ 𝑔 est décroissante  

Exercice 3 : En décomposant la fonction ℎ(𝑥) = |𝑥 − 3| en fonctions de référence, étudier ses 

variations. 

ℎ(𝑥) = 𝑓 ∘  𝑔(𝑥) 

avec 𝑓(𝑥) = |𝑥| et 𝑔(𝑥) = 𝑥 − 3 

Solution : 𝑔 est une fonction affine strictement croissante. 

La fonction 𝑓 est décroissante sur ] − ∞; 0] et croissante sur [0 ; +∞[ 

On va donc distinguer ces 2 cas : 

𝑓 est décroissante sur ] − ∞; 0] donc 𝑓 ∘  𝑔  est décroissante pour 𝑥 tel que 𝑔(𝑥) ≤ 0 

Or 𝑔(𝑥) ≤ 0 ⟺ 𝑥 ≤ 3 : ℎ est donc décroissante sur ] − ∞; 3] 

On montre de même que ℎ est croissante sur [3 ;  +∞[ 

 

Définition : 

 

 

Exemple : La fonction 𝑓 ∶  ℕ → ℕ        est-elle paire ? Non car ici, si 𝑛 ∈ ℕ ;  −𝑛 ∉ ℕ  

     𝑛 ↦ 𝑛²            

                    La fonction 𝑓 ∶  ℤ → ℕ        est-elle paire ? Oui car si 𝑛 ∈ ℤ ;  −𝑛 ∉ ℤ 

     𝑛 ↦ 𝑛²                                   et clairement 𝑓(𝑛) = 𝑓(−𝑛) 

 

  Definition : 

 

 

 

Remarque : On a également comme définition équivalente :  

𝑓 est continue en a si lim
ℎ→0

𝑓(𝑎 + ℎ) = 𝑓(𝑎) 

Théorème des valeurs intermédiaires 

 

 

 

Soit 𝑓 ∶ 𝑋 → ℝ une fonction . La fonction 𝑓est dite :  

• paire si pour tout 𝑥 ∈ 𝑋, on a −𝑥 ∈ 𝑋 et 𝑓(−𝑥) = 𝑓(𝑥) 

• impaire si pour tout 𝑥 ∈ 𝑋, on a −𝑥 ∈ 𝑋 et 𝑓(−𝑥) = −𝑓(𝑥) 

 

 

Soit 𝑓 une fonction continue sur un intervalle[𝑎 ; 𝑏]. 

Pour tout réel 𝑘 compris entre 𝑓(𝑎) et 𝑓(𝑏) il existe au moins un réel 𝑐 compris entre 𝑎 et 𝑏 tel que 𝑓(𝑐) = 𝑘 

𝑓 est une fonction définie sur un intervalle 𝐼 et 𝑎 est un nombre réel de 𝐼. 

• Dire que que 𝑓 est continue en 𝒂 signifie que 𝐥𝐢𝐦
𝒙→𝒂

𝒇(𝒙) = 𝒇(𝒂) 

• Dire que que 𝒇 est continue sur l’intervalle 𝑰 signifie que 𝒇 est continue en tout 

réel 𝒂 de 𝑰. 

 



Exercice 4 : Si 𝑓 est continue sur [0 ; 1] à valeurs dans [0 ,1] montrer que 𝑓(𝑥) = 𝑥 a au moins une solution 

Solution : On étudie la fonction 𝑔 définie par 𝑔(𝑥) = 𝑓(𝑥) − 𝑥 

𝑔 est donc continue comme différence de deux fonctions continues. 

𝑔(0) = 𝑓(0) − 0 = 𝑓(0) et 𝑔(1) = 𝑓(1) − 1 

• Si 𝑓(1) = 1 on a 1 comme solution et c’est fini. 

Sinon comme 𝑓 est à valeurs dans [0,1] alors 𝑓(1) < 1 et donc 𝑓(1) − 1 < 0 

• Soit 𝑓(0) = 0 et on a 0 comme solution alors c’est fini. 

• Soit 𝑓(0) ≠ 0 et comme 𝑓 est à valeurs dans [0,1] cela signifie que 𝑓(0) > 0 

Ainsi 𝑔(0) = 𝑓(0) est positif et 𝑔(1) = 𝑓(1) − 1 est négatif. Donc, d’après le théorème des 

valeurs intermédiaires, l’équation 𝑔(𝑥) = 0 possède au moins une solution, notons  𝛼 une 

de ces solutions et 𝑔(𝛼) = 0 équivaut à 𝑓(𝛼) = 𝛼 on a trouvé au moins une solution 

Exercice 5 :  

1. On considère la fonction exponentielle, démontrer que cette fonction réalise une bijection 

de ℝ dans ℝ+ 

2. La réciproque de cette fonction est la fonction logarithme népérien notée 𝑙𝑛. Démontrer 

que pour tous réels 𝑎 et 𝑏 strictement positifs, ln(𝑎 × 𝑏) = ln(𝑎) + ln (𝑏) 

Solution :  

1. La fonction exponentielle est continue et croissante strictement de ℝ dans ℝ+ donc d’après 

le théorème de la bijection, ∀ 𝑦 ∈ ℝ+ , ∃! 𝑥 ∈ ℝ tel que 𝑦 = 𝑒𝑥 . La fonction exponentielle 

est donc bien bijective de  ℝ dans ℝ+. 

2. On sait que 𝑒𝑥+𝑦 = 𝑒𝑥 × 𝑒𝑦  

De plus, 𝑙𝑛 étant la réciproque d’exponentielle : ∀𝑥 > 0; 𝑒ln(𝑥) = 𝑥 

Ainsi si 𝑎 et 𝑏 strictement positifs : 𝑒ln(𝑎)+ln(𝑏) = 𝑒ln(𝑎) × 𝑒ln(𝑏) = 𝑎 × 𝑏 

Et 𝑎 × 𝑏 = 𝑒ln(𝑎×𝑏) 

En identifiant ces deux égalités, on obtient que 𝑒ln(𝑎)+ln(𝑏) = 𝑒ln(𝑎×𝑏) 

Et comme exponentielle est injective : ln(𝑎) + ln(𝑏) = ln (𝑎 × 𝑏) 

 

Exercice 6 : Extrait du concours général de 2005 : Soit 𝑓: [0; 1] → ℝ une fonction numérique définie 

et continue sur l’intervalle [0; 1]. On suppose que 𝑓(0) = 𝑓(1) = 0 et que pour tout réel 𝑥 de 

l’intervalle [0 ;
7

10
] : 𝑓 (𝑥 +

3

10
) ≠ 𝑓(𝑥).  

1. Démontrer que l’équation 𝑓(𝑥) = 0 a au moins sept solutions sur [0; 1]. 

2. Donner une fonction 𝑓 vérifiant les hyptohèses, on pourra se contenter d’une 

représentation graphique claire. 

 

 Solution : Considérons la fonction 𝑔(𝑥) = 𝑓 (𝑥 +
3

10
) − 𝑓(𝑥) 

1. 𝑔 est continue sur l’intervalle [0 ;
7

10
] et ne s’y annule jamais car 𝑓 (𝑥 +

3

10
) ≠ 𝑓(𝑥). La 

fonction 𝑔 ne change donc jamais de signe car sinon d’après le théorème des valeurs 

intermédiaires, elle s’annulerait au moins une fois. Supposons par exemple que 𝑔 soit 

strictement positive. 

On a donc ∀ 𝑥 ∈ [0;
7

10
] ∶  𝑓 (𝑥 +

3

10
) > 𝑓(𝑥)  



En particulier pour 𝑥 = 0 : 𝑓 (
3

10
) > 𝑓(0) = 0 : 𝑓 (

3

10
) est positif 

Pour 𝑥 =
3

10
 : 𝑓 (

6

10
) > 𝑓 (

3

10
) puis pour 𝑥 =

6

10
∶ 𝑓 (

9

10
) > 𝑓 (

6

10
) 

On a ainis : 𝑓 (
9

10
) > 𝑓 (

6

10
) > 𝑓 (

3

10
) > 0 

Pour 𝑥 =
7

10
: 𝑓(1) > 𝑓 (

7

10
)  et 𝑓(1) = 0 donc 𝑓 (

7

10
) < 0 

Pour 𝑥 =
4

10
 : 𝑓 (

7

10
) > 𝑓 (

4

10
)  𝑒𝑡 𝑝𝑜𝑢𝑟 𝑥 =

1

10
∶ 𝑓 (

4

10
) > 𝑓 (

1

10
) 

On a donc : 𝑓 (
1

10
) < 𝑓 (

4

10
) < 𝑓 (

7

10
) < 0 

Sur l’intervalle [
1

10
;

3

10
] 𝑓 est continue et change de signe, d’après le théorème des valeurs 

interméidiaires, 𝑓 s’annule au moins 1 fois sur cet intervalle. 

De même, sur les intervalles : [
3

10
;

4

10
] ; [

4

10
;

6

10
] ; [

6

10
;

7

10
] et [

7

10
;

9

10
] 

On a donc montré que 𝑓 s’annule au moins 5 fois sur l’intervalle [
1

10
 ;

9

10
] 

Enfin, n’oublions pas que 𝑓(0) = 𝑓(1) = 0 : 𝑓 s’annule donc au moins 7 sept fois sur l’intervalle 

[0; 1] 

 

2. Une fonction affine par morceaux et continue convient parfaitement 

 
II. Equations fonctionnelles   

Une équation fonctionnelle est une équation dont l’inconnue est une fonction. 

Exercice 7 : Déterminer toutes les fonctions continues de ℝ ⟶ ℝ vérifiant  𝑓 × 𝑓 = 𝑓. C’est-à-

dire telles que pour tous réels 𝑥 et 𝑦 : 𝑓(𝑥) × 𝑓(𝑥) = 𝑓(𝑥). 

Solution : ∀ 𝑥 ∈  ℝ : 𝑓(𝑥)(𝑓(𝑥) − 1) = 0 ⟺ ∀ 𝑥 ∈  ℝ : 𝑓(𝑥) = 0 𝑜𝑢 𝑓(𝑥) = 1 

𝑓 ne peut donc prendre que deux valeurs : 1 ou 0. 

Supposons que : ∃ 𝑥 ∈ ℝ : 𝑓(𝑥) = 0 et  ∃ 𝑦 ∈ ℝ : 𝑓(𝑦) ≠ 0 

Alors 𝑓 n’est pas continue : contradiction. De même, si ∃ 𝑥 ∈ ℝ : 𝑓(𝑥) = 1 alors ∀𝑥 ∈

 ℝ, 𝑓(𝑥) = 1 

Donc ∀ 𝑥 ∈  ℝ ∶ 𝑓(𝑥) = 0 ou ∀ 𝑥 ∈  ℝ ∶ 𝑓(𝑥) = 1 

On donc trouvé que si une fonction vérifie l’équation fonctionnelle donnée alors c’est soit la 

fonction identiquement nulle soit la fonction constante égale à 1. 



Cette partie, s’appelle l’analyse : si une fonction 𝑓 vérifie l’équation fonctionnelle alors 𝑓 est soit 

identiquement nulle soit constante égale à 1. Il ne faut pas oublier maintenant de vérifier que 

ces 2 solutions conviennent : 

Réciproquement : si 𝑓 est la fonction identiquement nulle, elle vérifie clairement 𝑓 × 𝑓 = 𝑓 

De même, si 𝑓 est la fonction constante égale à 1, elle vérifie aussi clairement 𝑓 × 𝑓 = 𝑓. 

Conclusion : Les fonctions continues de ℝ ⟶ ℝ vérifiant  𝑓 × 𝑓 = 𝑓 sont la fonction 

identiquement nulle et la fonction constante égale à 1. 

Bilan : Résoudre des équations fonctionnelles. 

Pour résoudre une équation fonctionnelle, on utilise souvent le raisonnement appelé 

Analyse/synthèse.  

➢ Analyse : on essaie de collecter des informations sur la fonction : valeur particulière 

(peut-on trouver 𝑓(0) ?) valeur en laquelle elle s’annule, … Puis on essaie de trouver la 

solution ou plutôt une famille de solutions. 

➢ Synthèse : on vérifie ensuite que la solutions trouvées répondent bien au problème 

donné. 

La partie Analyse n’est pas toujours évidente à mettre en place, car on ne dispose pas vraiment 

d’une méthode générale. En pratiquant, on va constater des procédés de raisonnement qui vont 

se répéter : 

➢ On teste si des fonctions « évidentes » répondent au problème : fonction constante, 

identité ou fonction polynôme. 

➢ Peut-on déterminer 𝑓(0) ou 𝑓(1) ? si non, on leur attribuera une valeur et on avance 

dans le procédé. 

➢ Il peut être aussi intéressant d’étudier la parité de la fonction. Montrer qu’elle est paire 

ou impaire permet de ne l’étudier ensuite que sur ℝ+ 

➢ Lorsque plusieurs paramètres interviennent, 𝑥 et 𝑦, est-ce que fixer la valeur 0 à l’un 

deux permet de donner des renseignements intéressants sur la fonction ? 

Exercice 8 : Déterminer toutes les fonctions 𝑓 ∶  ℝ ⟶ ℝ  telles que pour tous réels 𝑥 et 𝑦 : 

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) − 𝑓(𝑦) 

Solution : 

1. On peut déjà constater que la fonction nulle convient. 

2. En prenant 𝑥 = 𝑦 = 0 on trouve que 𝑓(0) = 𝑓(0 + 0) = 𝑓(0) − 𝑓(0) = 0 

3. En prenant 𝑥 = 0 on obtient que ∀𝑦 ∈ ℝ ∶  𝑓(𝑦) = −𝑓(𝑦) ce qui implique que 𝑓(𝑦) = 0 

Analyse : Si 𝑓 est une solution de l’équation fonctionnelle alors 𝑓 est identiquement nulle. 

Synthèse : Etant donné que la fonction nulle vérifie bien l’équation fonctionnelle, on en 

déduit que la seule solution possible est la fonction nulle. 

  

Exercice 9 : Déterminer toutes les fonctions strictement croissante sur ℝ vérifiant 𝑓 ∘ 𝑓 = 𝑖𝑑. Où 𝑖𝑑 

désigne la fonction identité : 𝑖𝑑 ∶ 𝑥 ↦ 𝑥. 

Solution : 

Analyse : La fonction 𝑓(𝑥) = 𝑥 convient parfaitement, difficle d’en trouver d’autre : on va montrer 

que c’est la seule solution en raisonnant par l’absurde. 



Supposons qu’il existe une fonction 𝑓 strictement croissante vérifiant 𝑓(𝑓(𝑥)) = 𝑥 pour tout réel 𝑥 

qui ne soit pas la fonction identité, c’est-à-dire qu’il existe un réel 𝑎 tel que 𝑓(𝑎) ≠ 𝑎. 

• Soit 𝑓(𝑎) < 𝑎 et comme 𝑓 est strictement croissante : 𝑓(𝑓(𝑎)) < 𝑓(𝑎). Or 𝑓(𝑓(𝑎) = 𝑎 et 

donc 𝑎 < 𝑓(𝑎) : 𝑎𝑏𝑠𝑢𝑟𝑑𝑒. 

• Soit 𝑓(𝑎) > 𝑎 et comme 𝑓 est strictement croissante : 𝑓(𝑓(𝑎)) > 𝑓(𝑎). Or 𝑓(𝑓(𝑎) = 𝑎 et 

donc 𝑎 > 𝑓(𝑎) : 𝑎𝑏𝑠𝑢𝑟𝑑𝑒. 

On obtient donc une contradiction, ce qui signifie que 𝑓(𝑎) = 𝑎 pour tout réel 𝑎 et donc 𝑓 est la 

fonction identité. 

Synthèse : La fonction identité vérifie clairement l’équation fonctionnelle. 

Conclusion : La seule solution possible est la fonction identité. 

Exercice 10 : Déterminer toutes les fonctions de ℝ ⟶ ℝ continues en 0 et vérifiant  pour tous 

réels 𝑥 et 𝑦 : 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦).  

1. Donner des solutions particulières de cette équation fonctionnelle. 

2. Si 𝑓 est solution de cette équation fonctionnelle. Déterminer 𝑓(0). 

3. Démontrer qu’une fonction 𝑓 vérifiant l’équation fonctionnelle est impaire. 

4. Si 𝑓 est solution de cette équation fonctionnelle montrer que 𝑓 est continue sur ℝ. 

(Indication : Montrer que 𝑓 est continue en 𝑎 revient à montrer que 𝑙𝑖𝑚
ℎ→0

𝑓(𝑎 + ℎ) =  … ) 

5. Si 𝑛 est un entier naturel, démontrer par récurrence une formule donnant 𝑓(𝑛) en fonction 

de 𝑓(1) 

6. Montrer que cette égalité est encore vérifiée si 𝑛 est un entier relatif 

7. Montrer que cette égalité est encore vérifiée si 𝑟 est un rationnel. 

8. Montrer que cette égalité est encore vérifiée si 𝑥 est un réel. 

On admettra la propriété suivante :  « Pour tout réel 𝒙, il existe une suite (𝒙𝒏) de rationnels 

(des développements décimaux par exemple) qui converge vers 𝒙 » 

9. Conclure 

Solution : 

1. Donner des solutions particulières de cette équation fonctionnelle. 

Essayons avec les fonctions constantes : Si 𝑓(𝑥) = 𝑘 est une fonction constante avec 𝑘 réel 

alors 𝑓(𝑥 + 𝑦) = 𝑘. Si de plus 𝑓est solution de l’équation fonctionnelle alors 𝑓(𝑥 + 𝑦) =

𝑓(𝑥) + 𝑓(𝑦) = 2𝑘. On obtient que 𝑘 = 2𝑘 ce qui implique 𝑘 = 0. Parmi les fonctions 

constantes, seule la fonction identiquement nulle convient. 

La fonction identité  convient  car 𝑖𝑑(𝑥 + 𝑦) = 𝑥 + 𝑦 = 𝑖𝑑(𝑥) + 𝑖𝑑(𝑦) 

Les fonctions affines 𝑓(𝑥) = 𝑎𝑥 + 𝑏 

𝑓(𝑥 + 𝑦) = 𝑎(𝑥 + 𝑦) + 𝑏 = 𝑎𝑥 + 𝑎𝑦 + 𝑏 
Or 𝑓(𝑥) + 𝑓(𝑦) = 𝑎𝑥 + 𝑏 + 𝑎𝑦 + 𝑏 = 𝑎𝑥 + 𝑎𝑦 + 2𝑏 

Si 𝑓 vérifie l’équation fonctionnelle, on obtient que 𝑏 = 2𝑏 c’est-à-dire 𝑏 = 0 

Les seules fonctionnes affines qui conviennent sont les fonctions linéaires 𝑓(𝑥) = 𝑎𝑥 

2. Si 𝑓 est solution de cette équation fonctionnelle. Déterminer 𝑓(0). 

𝐴𝑣𝑒𝑐 𝑥 = 0 𝑒𝑡  𝑦 = 0 on obtient que 𝑓(0) = 𝑓(0 + 0) = 𝑓(0) + 𝑓(0) = 2𝑓(0) c’est-à-dire 

𝑓(0) = 0 
3. Démontrer qu’une fonction 𝑓 vérifiant l’équation fonctionnelle est impaire. 

∀𝑥 ∈ ℝ, l’équation fonctionnelle avec 𝑦 = −𝑥 nous : 

𝑓(𝑥 − 𝑥) = 𝑓(𝑥) + 𝑓(−𝑥) 

𝑂𝑟 𝑓(𝑥 − 𝑥) = 𝑓(0) = 0 
D’où : 𝑓(𝑥) + 𝑓(−𝑥) = 0 c’est-à-dire : 𝑓(−𝑥) = −𝑓(𝑥) : 𝑓 est impaire. 

4. Si 𝑓 est solution de cette équation fonctionnelle montrer que 𝑓 est continue sur ℝ 

Soit 𝑎 un réel non nul : Montrer que 𝑓 est continue en 𝑎 revient à montrer que : 



lim
ℎ→0

𝑓(𝑎 + ℎ) = 𝑓(𝑎) 

Or 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓(ℎ) 

lim
ℎ→0

𝑓(𝑎 + ℎ) = lim
ℎ→0

𝑓(𝑎) + lim
ℎ→0

𝑓(ℎ) 

lim
ℎ→0

𝑓(𝑎) = 𝑓(𝑎) 

Et par continuité de 𝑓 en 0 : lim
ℎ→0

𝑓(ℎ) = 𝑓(0) = 0 

D’où : lim
ℎ→0

𝑓(𝑎 + ℎ) = 𝑓(𝑎) : 𝑓 est continue en 𝑎. 

Ceci étant vrai pour tout réel 𝑎, 𝑓 est bien continue sur ℝ. 

5. Si 𝑛 est un entier naturel, démontrer par récurrence une formule donnant 𝑓(𝑛) en fonction 

de 𝑓(1) 

Regardons quelques exemples :  

𝑛 = 2 : 𝑓(2) = 𝑓(1 + 1) = 𝑓(1) + 𝑓(1) = 2𝑓(1) 

𝑛 = 3 : 𝑓(3) = 𝑓(2 + 1) = 𝑓(2) + 𝑓(1) = 3𝑓(1) etc …. 

Posons, pour tout entier naturel 𝑛  𝑃(𝑛) la propriété : « 𝑓(𝑛) = 𝑛𝑓(1) » 

Démontrons 𝑃(𝑛) par récurrence sur 𝑛 

Initialisation : 𝑛 = 0 : 𝑓(0) = 0 = 0𝑓(1) : 𝑃(0) est vréifiée. 

Hérédité : Supposons 𝑃(𝑛) vraie pour un certain entier naturel 𝑛 et montrons que 𝑃(𝑛 + 1) 

est vraie également. 

Par hypothèse de récurrence : 𝑓(𝑛) = 𝑛𝑓(1) 

𝑓(𝑛 + 1) = 𝑓(𝑛) + 𝑓(1) = 𝑛𝑓(1) + 𝑓(1) = (𝑛 + 1)𝑓(1) 

𝑃(𝑛 + 1)𝑒𝑠𝑡 𝑣é𝑟𝑖𝑓𝑖é𝑒. 

Conclusion : 𝑃(𝑛) est vraie au rang 𝑛 et est héréditaire. Par axiome de récurrence 𝑃(𝑛) est 

vraie pour tout entier naturel 𝑛. 

6. Montrer que cette égalité est encore vérifiée si 𝑛 est un entier relatif 

D’après la question précédente, il faut la relation si 𝑛 ∈ ℤ et  𝑛 < 0. 

Dans ce cas, −𝑛 ∈ ℕ et 𝑓(−𝑛) = −𝑛𝑓(1) d’après la question précédente. 

Or 𝑓 étant impaire : 𝑓(𝑛) = −𝑓(−𝑛) = 𝑛𝑓(1) : l’égalité est encore vérifiée. 

(Remarque : On peut aussi utiliser la relation 𝑓(𝑛 − 𝑛) = 𝑓(𝑛) + 𝑓(−𝑛)) 

7. Montrer que cette égalité est encore vérifiée si 𝑟 est un rationnel. 

Si 𝑟 ∈ ℚ alors 𝑟 =
𝑝

𝑞
 avec 𝑝 et 𝑞 entiers relatifs, et 𝑞 non nul. 

Ainsi 𝑓(𝑞 × 𝑟) = 𝑓(𝑝) = 𝑝𝑓(1) car 𝑝 est un entier relatif et on utilise la question 

précédente.  

Or d’après l’équation fonctionnelle 𝑓(𝑞 × 𝑟) = 𝑞(𝑓(𝑟)) 

On obtient donc 𝑞𝑓(𝑟) = 𝑝𝑓(1) 

𝑓(𝑟) =
𝑝

𝑞
𝑓(1) = 𝑟𝑓(1) 

L’égalité est encore vérifiée pour les rationnels. 

8. Montrer que cette égalité est encore vérifiée si 𝑥 est un réel. 

On utilise la propriété donnée : Il existe une suite de rationnels (𝑥𝑛) qui converge vers 𝑥. 

𝑓(𝑥) = 𝑓( lim
𝑛→+∞

𝑥𝑛) 

Et 𝑓 étant continue : 𝑓 ( lim
𝑛→+∞

𝑥𝑛) = lim
𝑛→+∞

𝑓(𝑥𝑛) = lim
𝑛→+∞

𝑥𝑛𝑓(1) = 𝑥𝑓(1) 

Ainsi pour tout réel 𝑥, on obtient 𝑓(𝑥) = 𝑥𝑓(1) 

9. Conclure : 

Analyse : D’après les question précédentes, on a montré que si une fonction 𝑓 est solution 

de l’équation fonctionnelle, alors 𝑓(𝑥) = 𝑥𝑓(1) et en posant 𝑓(1) = 𝑎, on obtient que 

𝑓(𝑥) = 𝑎𝑥 c’est-à-dire que 𝑓 est linéaire. 

Synthèse : Nous avons déjà vérifié que les fonctions linéaires sont bien solution de 

l’équation fonctionnelle. 

Conclusion : Les solutions de l’équation fonctionnelle sont les fonctions linéaires. 

 



Exercice 11 : Soit 𝑓: ℝ ⟶  ℝ une fonction continue en 0 et en 1 telle que : 

∀ 𝑥 ∈  ℝ, 𝑓(𝑥) = 𝑓(𝑥2) 

Montrer que 𝑓 est constante. 

Indication : commencer par étduier la parité de 𝑓.  

Pour tout 𝑥 > 0, remarquer ( 𝑥
1

2𝑛 ) converge vers 1 et utiliser la continuité de 𝑓 en 1. 

Solution : On peu déjà remarquer que :  

∀𝑥 ∈ ℝ, 𝑓(−𝑥) = 𝑓((−𝑥)2) = 𝑓(𝑥2) = 𝑓(𝑥) 

La fonction 𝑓 est paire. Il suffit donc de montrer que 𝑓 est constante sur ℝ+ 

Soit 𝑥 > 0.  Comme lim
𝑛→+∞

𝑥
1

2𝑛 = 1 et que 𝑓 est continue en 1 :  

lim
𝑛→+∞

𝑓(𝑥
1

2𝑛) = 𝑓 ( lim
𝑛→+∞

𝑥
1

2𝑛) = 𝑓(1) 

Or 𝑓 (𝑥
1

2𝑛) = 𝑓((𝑥
1

2𝑛)²) =  𝑓(𝑥
1

2𝑛−1) =  𝑓(𝑥
1

2𝑛−2) = ⋯ =  𝑓(𝑥) 

Donc lim
𝑛→+∞

𝑓(𝑥
1

2𝑛) = 𝑓(𝑥) 

Par unicité de la limite, il vient 𝑓(𝑥) = 𝑓(1) 

𝑓 est donc constante et égale à 𝑓(1) sur ℝ+
∗  puis par parité, 𝑓 est constante sur ℝ∗ 

Reste à déterminer 𝑓(0) 

Comme 𝑓 est supposée continue en 0 :  𝑓(0) = lim
𝑥→0+

𝑓(𝑥) 

𝑓 étant constante sur ℝ∗ : lim
𝑥→0+

𝑓(𝑥) = 𝑓(1). 

On a donc : 𝑓(0) = 𝑓(1) : 𝑓 est constante sur ℝ. 

Synthèse : Les fonctions constantes vérifient clairement l’équation fonctionnelle. 

Conclusion : Les seules solutions de cette équation fonctionnelle sont les fonctions constantes. 

 

Exercice 12 : Soit 𝑓: ℝ ⟶  ℝ une fonction continue telle que : 

∀ 𝑥 ∈  ℝ, 𝑓 (
𝑥 + 𝑦

2
) =

1

2
( 𝑓(𝑥) + 𝑓(𝑦)) 

a) On suppose que 𝑓(0) = 0. Vérifier que  

∀ 𝑥, 𝑦 ∈  ℝ, 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) 
Donner alors la forme de la fonction 𝑓 

b) On revient au cas général. Déterminer 𝑓. 

Solution :  

a) ∀ 𝑥 ∈  ℝ : 𝑓 (
𝑥

2
) = 𝑓 (

𝑥+0

2
) =

1

2
(𝑓(𝑥) + 𝑓(0)) =

1

2
𝑓(𝑥) 

Ceci étant vrai pour tout réel 𝑥, on a notamment que : 

𝑓 (
𝑥 + 𝑦

2
) =

1

2
𝑓(𝑥 + 𝑦) 

Or d’après l’équation fonctionnelle vérifiée par 𝑓  



𝑓 (
𝑥 + 𝑦

2
) =

1

2
( 𝑓(𝑥) + 𝑓(𝑦)) 

Ainsi :  
1

2
𝑓(𝑥 + 𝑦) =

1

2
(𝑓(𝑥) + 𝑓(𝑦)) 

Et donc 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) 

On retrouve l’équation fonctionnelle de Cauchy (exercice 10) et on en déduit que 𝑓(𝑥) = 𝑎𝑥 

avec 𝑎 réel 

b) Revnons au cas général : considérons la fonction 𝑔 ∶ 𝑥 ↦ 𝑓(𝑥) − 𝑓(0) 

On a 𝑔(0) = 0 et ∀ 𝑥, 𝑦 ∈  ℝ 

𝑔 (
𝑥 + 𝑦

2
) = 𝑓 (

𝑥 + 𝑦

2
) − 𝑓(0) 

=  
1

2
(𝑓(𝑥) + 𝑓(𝑦)) − 𝑓(0) 

En remarquant que 𝑓(0) =
1

2
𝑓(0) +

1

2
𝑓(0) il vient que :  

𝑔 (
𝑥 + 𝑦

2
) =

1

2
(𝑓(𝑥) − 𝑓(0)) +

1

2
(𝑓(𝑦) − 𝑓(0)) 

=
1

2
𝑔(𝑥) +

1

2
𝑔(𝑦) 

=
1

2
(𝑔(𝑥) + 𝑔(𝑦)) 

Ainsi, 𝑔 vérifie l’équation fonctionnelle et 𝑔(0) = 0 

D’après la question a) : 𝑔(𝑥) = 𝑎𝑥 avec 𝑎 réel. 

Par suite 𝑓(𝑥) = 𝑔(𝑥) + 𝑓(0) = 𝑎𝑥 + 𝑓(0) = 𝑎𝑥 + 𝑏 en posant 𝑏 = 𝑓(0) 

𝑓 est donc une fonction affine. 

  Synthèse : les fonctions affines vérifient bien l’équation fonctionnelle. 

Les solutions de cette équation fonctionnelle sont donc les fonctions affines. 

 

Exercice 13 : Déterminer toutes les fonction 𝑓: ℝ ⟶  ℝ telles que : 

∀ 𝑥, 𝑦 ∈  ℝ, 𝑓(𝑥)𝑓(𝑦) − 𝑓(𝑥𝑦) = 𝑥 + 𝑦 

Analyse : Soit 𝑓 une solution de l’équation fonctionnelle. 

En prenant 𝑥 = 𝑦 = 0, on obtient que 𝑓(0)2 − 𝑓(0) = 0 soit 𝑓(0)2 = 𝑓(0) 

Donc 𝑓(0) = 0 ou 𝑓(0) = 1 

Si 𝑓(0) = 0 : reprenons l’équation fonctionnelle pour tout réel 𝑥 ≠ 0 et fixons 𝑦 = 0. 

Il vient : 𝑓(𝑥)𝑓(0) − 𝑓(0) = 𝑥 c’est-à-dire : 𝑥 = 0 : on obtient une contradiction. 

Le cas 𝑓(0) = 0 est donc impossible.On a donc 𝑓(0) = 1 

Reprenons l’équation fonctionnelle pour tout réel 𝑥 ≠ 0 et fixons 𝑦 = 0 

On obtient cette fois : 𝑓(𝑥)𝑓(0) − 𝑓(0) = 𝑥 

𝑓(𝑥) − 1 = 𝑥 

𝑓(𝑥) = 𝑥 + 1 

Donc si 𝑓 est solution, la seule fonction possible est : 𝑓(𝑥) = 𝑥 + 1 

Synthèse : on vérifie que 𝑓(𝑥) = 𝑥 + 1 est bien solution de l’équation fonctionnelle. 

Conclusion : L’unique solution est 𝑓(𝑥) = 𝑥 + 1 


