Analysis of $x \mapsto\left(x^{2}+2 x\right) e^{x}$

We consider the function defined by $f(x)=\left(x^{2}+2 x\right) e^{x}$.
Its domain of definition is \mathbb{R}.
It is derivable on \mathbb{R}.
Its derivative is $f^{\prime}(x)=\left(x^{2}+4 x+2\right) e^{x}$.
It admits the below limits:

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty
$$

The equation of its horizontal asymptote is:

$$
y=0
$$

A table of values is:

x	$-\sqrt{2}-2 \approx-3.41$	$\sqrt{2}-2 \approx-0.585$
$f(x)$	$2^{\frac{3}{2}} \cdot e^{-\sqrt{2}-2}+2 \cdot e^{-\sqrt{2}-2} \approx 0.158$	$2 \cdot e^{\sqrt{2}-2}-2^{\frac{3}{2}} \cdot e^{\sqrt{2}-2} \approx-0.461$

Its table of variations is:

x	$-\infty$	$-\sqrt{2}-2$	$\sqrt{2}-2$	$+\infty$	
$f^{\prime}(x)$	+	0	-	0	+
$f(x)$			$2^{\frac{3}{2}} \cdot e^{-\sqrt{2}-2}+2 \cdot e^{-\sqrt{2}-2}$		$2 \cdot e^{\sqrt{2}-2}-2^{\frac{3}{2}} \cdot e^{\sqrt{2}-2}$

Its graph is:

Note: these results have been obtained from an automated program and are not guaranteed to be exact.

