
24-NSIJ2JA1 Page : 2 / 12

EXERCICE 1 (6 points)

Cet exercice porte sur la programmation Python (listes, dictionnaires) et la méthode
“diviser pour régner”.

Cet exercice est composé de trois parties indépendantes.

Dans cet exercice, on s’intéresse à des algorithmes pour déterminer, s’il existe,
l’élément absolument majoritaire d’une liste.

On dit qu’un élément est absolument majoritaire s’il apparaît dans strictement plus de
la moitié des emplacements de la liste.

Par exemple, la liste [1, 4, 1, 6, 1, 7, 2, 1, 1] admet 1 comme élément

absolument majoritaire, car il apparaît 5 fois sur 9 éléments. Par ailleurs, la liste [1,
4, 6, 1, 7, 2, 1, 1] n’admet pas d’élément absolument majoritaire, car celui qui
est le plus fréquent est 1, mais il n’apparaît que 4 fois sur 8, ce qui ne fait pas plus que
la moitié.

1. Déterminer les effectifs possibles d’un élément absolument majoritaire dans
une liste de taille 10.

Partie A : Calcul des effectifs de chaque élément sans dictionnaire

On peut déterminer l’éventuel élément absolument majoritaire d’une liste en calculant
l’effectif de chacun de ses éléments.

2. Écrire une fonction effectif qui prend en paramètres une valeur val et une
liste lst et qui renvoie le nombre d’apparitions de val dans lst. Il ne faut pas
utiliser la méthode count.

3. Déterminer le nombre de comparaisons effectuées par l’appel effectif(1,
[1, 4, 1, 6, 1, 7, 2, 1, 1]).

4. En utilisant la fonction effectif précédente, écrire une fonction majo_abs1 qui
prend en paramètre une liste lst, et qui renvoie son élément absolument
majoritaire s’il existe et renvoie None sinon.

5. Déterminer le nombre de comparaisons effectuées par l’appel à
majo_abs1([1, 4, 1, 6, 1, 7, 2, 1, 1]).

24-NSIJ2JA1 Page : 3 / 12

Partie B : Calcul des effectifs de chaque élément dans un dictionnaire

Un autre algorithme consiste à déterminer l’élément absolument majoritaire éventuel
d’une liste en calculant l’effectif de tous ses éléments en stockant l’effectif partiel de
chaque élément déjà rencontré dans un dictionnaire.

6. Recopier et compléter les lignes 3, 4, 5 et 7 de la fonction eff_dico suivante
qui prend en paramètre une liste lst et qui renvoie un dictionnaire dont les clés
sont les éléments de lst et les valeurs les effectifs de chacun de ces éléments
dans lst.

1 def eff_dico(lst):
2 dico_sortie = {}
3 for :
4 if ... in dico_sortie:
5 ...
6 else:
7 ...
8 return dico_sortie

7. En utilisant la fonction eff_dico précédente, écrire une fonction majo_abs2 qui
prend en paramètre une liste lst, et qui renvoie son élément absolument

majoritaire s’il existe et renvoie None sinon.

Partie C : par la méthode “diviser pour régner”

Un dernier algorithme consiste à partager la liste en deux listes. Ensuite, il s’agit de
déterminer les éventuels éléments absolument majoritaires de chacune des deux
listes. Il suffit ensuite de combiner les résultats sur les deux listes afin d’obtenir, s’il
existe, l’élément majoritaire de la liste initiale.

Les questions suivantes vont permettre de concevoir précisément l’algorithme.

On considère lst une liste de taille n.

8. Déterminer l’élément absolument majoritaire de lst si n = 1. C’est le cas de
base.

On suppose que l’on a partagé lst en deux listes :

• lst1 = lst[:n//2] (lst1 contient les n//2 premiers éléments de lst)

• lst2 = lst[n//2:] (lst1 contient les autres éléments de lst)

9. Si, ni lst1 ni lst2 n’admet d’élément absolument majoritaire, expliquer
pourquoi lst n’admet pas d’élément absolument majoritaire.

10. Si lst1 admet un élément absolument majoritaire maj1, donner un algorithme
pour vérifier si maj1 est l’élément absolument majoritaire de lst.

24-NSIJ2JA1 Page : 4 / 12

11. Recopier et compléter les lignes 4, 11, 13, 15 et 17 pour la fonction récursive
majo_abs3 qui implémente l’algorithme précédent. Vous pourrez utiliser la
fonction effectif de la question 2.

1 def majo_abs3(lst):
2 n = len(lst)
3 if n == 1:
4 return ...
5 else:
6 lst_g = lst[:n//2]
7 lst_d = lst[n//2:]
8 maj_g = majo_abs3(lst_g)
9 maj_d = majo_abs3(lst_d)
10 if maj_g is not None:
11 eff =
12 if eff > n/2:
13 return ...
14 if maj_d is not None:
15 eff =
16 if eff > n/2:
17 return ...

