EXERCICE 1 (6 points)

Cet exercice porte sur la programmation Python (listes, dictionnaires) et la méthode
“diviser pour régner’.

Cet exercice est composé de trois parties indépendantes.

Dans cet exercice, on s’intéresse a des algorithmes pour déterminer, s’il existe,
I'élément absolument majoritaire d’'une liste.

On dit qu’'un élément est absolument majoritaire s’il apparait dans strictement plus de
la moitié des emplacements de la liste.

Par exemple, la liste (1, 4, 1, 6, 1, 7, 2, 1, 1] admet 1 comme élément
absolument majoritaire, car il apparait 5 fois sur 9 éléments. Par ailleurs, la liste [1,
4, 6, 1, 7, 2, 1, 1] n‘admet pas d’élément absolument maijoritaire, car celui qui
est le plus fréquent est 1, mais il napparait que 4 fois sur 8, ce qui ne fait pas plus que
la moitié.
1. Déterminer les effectifs possibles d’'un élément absolument majoritaire dans
une liste de taille 10.

Partie A : Calcul des effectifs de chaque élément sans dictionnaire

On peut déterminer I'éventuel élément absolument majoritaire d’'une liste en calculant
I'effectif de chacun de ses éléments.

2. Ecrire une fonction effectif qui prend en paramétres une valeur val et une
liste 1st et qui renvoie le nombre d’apparitions de val dans 1st. Il ne faut pas
utiliser la méthode count.

3. Deéterminer le nombre de comparaisons effectuées par I'appel effectif (1,
(1, 4, 1, 6, 1, 7, 2, 1, 1]).

4. En utilisant la fonction effectif précédente, écrire une fonction majo absl qui
prend en paramétre une liste 1st, et qui renvoie son élément absolument
majoritaire s’il existe et renvoie None sinon.

5. Déterminer le nombre de comparaisons effectuées par l'appel a
majo absl([1, 4, 1, 6, 1, 7, 2, 1, 1]).

24-NSI1J2JA1 Page :2/12

Partie B : Calcul des effectifs de chaque élément dans un dictionnaire

Un autre algorithme consiste a déterminer I'élément absolument majoritaire éventuel
d’'une liste en calculant I'effectif de tous ses éléments en stockant I'effectif partiel de
chaque élément déja rencontré dans un dictionnaire.

6. Recopier et compléter les lignes 3, 4, 5 et 7 de la fonction eff dico suivante
qui prend en parametre une liste 1st et qui renvoie un dictionnaire dont les clés
sont les éléments de 1st et les valeurs les effectifs de chacun de ces éléments
dans 1st.

1 def eff dico(lst):

2 dico sortie = {}

3 for :

4 if ... in dico_sortie:

5

6

;

8

else:

return dico sortie

7. Enutilisant la fonction ef£ dico précédente, écrire une fonction majo_abs2 qui
prend en parameétre une liste 1st, et qui renvoie son élément absolument
majoritaire s’il existe et renvoie None sinon.

Partie C : par la méthode “diviser pour régner”

Un dernier algorithme consiste a partager la liste en deux listes. Ensuite, il s’agit de
déterminer les éventuels éléments absolument majoritaires de chacune des deux
listes. Il suffit ensuite de combiner les résultats sur les deux listes afin d’obtenir, s’il
existe, I'élément majoritaire de la liste initiale.

Les questions suivantes vont permettre de concevoir précisément I'algorithme.
On considére 1st une liste de taille n.

8. Déterminer I'élément absolument majoritaire de 1st sin = 1. C’est le cas de
base.

On suppose que I'on a partagé 1st en deux listes :

* 1stl = 1st[:n//2] (1stl contientles n//2 premiers éléments de 1st)

° 1st2

1st[n//2:] (1stl contient les autres éléments de 1st)

9. Si, ni 1stl ni 1st2 n‘admet d’élément absolument maijoritaire, expliquer
pourquoi 1st n‘admet pas d’élément absolument majoritaire.

10. Si 1st1 admet un élément absolument majoritaire ma§1, donner un algorithme
pour vérifier simaj1 est I'élément absolument majoritaire de 1st.

24-NSI1J2JA1 Page : 3/12

11. Recopier et compléter les lignes 4, 11, 13, 15 et 17 pour la fonction récursive
majo abs3 qui implémente l'algorithme précédent. Vous pourrez utiliser la
fonction effectif de la question 2.

1 def majo abs3(lst):

2 n = len(lst)

3 if n ==

4 return

5 else:

6 lst g = 1st[:n//2]

7 1st d = 1lst[n//2:]

8 maj g = majo_abs3(lst g)
9 maj d = majo_abs3(lst d)
10 if maj g is not None:

11 eff =

12 if eff > n/2:

13 return

14 if maj d is not None:

15 eff =

16 if eff > n/2:

17 return

24-NSI1J2JA1 Page : 4 /12

